1-Octadecene is a widely used solvent for high-temperature nanocrystal synthesis (120-320 °C). Here, we show that 1-octadecene spontaneously polymerizes under these conditions, and the resulting poly(1-octadecene) has a comparable solubility and size to nanocrystals stabilized by hydrophobic ligands. Typical purification procedures (precipitation/redispersion cycles or size exclusion chromatography) fail to separate the poly(1-octadecene) impurity from the nanocrystal product. To avoid formation of poly(1-octadecene), we replace 1-octadecene with saturated, aliphatic solvents. Alternatively, the nanocrystals' native ligands are exchanged for polar ligands, leading to significant solubility differences between nanocrystals and poly(1-octadecene), therefore allowing isolation of pure nanocrystals, free from polymer impurities. These results will help design superior syntheses and improve nanocrystal purity, an important factor in many applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b03088DOI Listing

Publication Analysis

Top Keywords

nanocrystal synthesis
8
trouble ode
4
ode polymerization
4
nanocrystal
4
polymerization nanocrystal
4
synthesis 1-octadecene
4
1-octadecene solvent
4
solvent high-temperature
4
high-temperature nanocrystal
4
synthesis 120-320
4

Similar Publications

Here we describe the synthesis and evaluation of a molecular corrosion sensor that can be applied in situ in aerospace coatings, then used to detect corrosion after the coating has been applied. A pH-sensitive molecule, 4-mercaptopyridin (4-MP), is attached to a gold nanoparticle to allow surface-enhanced Raman-scattering (SERS) for signal amplification. These SERS nanoparticles, when combined with an appropriate micron-sized carrier system, are incorporated directly into an MIL-SPEC coating and used to monitor the process onset and progression of corrosion using pH changes occurring at the metal-coating interface.

View Article and Find Full Text PDF

Gold-Mercury-Platinum Alloy for Light-Enhanced Electrochemical Detection of Hydrogen Peroxide.

Sensors (Basel)

December 2024

Center for Experimental Chemistry Education of Shandong University, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

In this study, a simple and easy synthesis strategy to realize the modification of AuHgPt nanoalloy materials on the surface of ITO glass at room temperature is presented. Gold nanoparticles as templates were obtained by electrochemical deposition, mercury was introduced as an intermediate to form an amalgam, and then a galvanic replacement reaction was utilized to successfully prepare gold-mercury-platinum (AuHgPt) nanoalloys. The obtained alloys were characterized by scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction techniques.

View Article and Find Full Text PDF

This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells.

View Article and Find Full Text PDF

Objective: The objective of this study was to explore the possibility of treating heart failure in rats by delivering mRNA of 24-dehydrocholesterol reductase (DHCR24) into the body through lipid nanoparticles (LNPs).

Methods: We established a heart failure rat model using doxorubicin. The experiment was divided into blank, model, mRNA stock solution cardiac injection, mRNA stock solution intravenous injection, LNP-mRNA stock solution cardiac injection, and LNP-mRNA stock solution intravenous injection groups.

View Article and Find Full Text PDF

Biomacromolecules generally exist and function in aqueous media. Is it possible to estimate the state and properties of molecules in an initial three-dimensional colloidal solution based on the structure properties of biomolecules adsorbed on the two-dimensional surface? Using atomic force microscopy to study nanosized objects requires their immobilization on a surface. Particles undergoing Brownian motion in a solution significantly reduce their velocity near the surface and become completely immobilized upon drying.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!