A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionh0p36pjfi559vq85nhqjuq5v7v86cp8m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessment of zooplankton-based eco-sustainable wastewater treatment at laboratory scale. | LitMetric

Assessment of zooplankton-based eco-sustainable wastewater treatment at laboratory scale.

Chemosphere

Department of Chemistry, University of Girona, Carrer Maria Aurèlia Capmany, 69, E-17003, Girona, Spain. Electronic address:

Published: January 2020

AI Article Synopsis

  • * Testing at different hydraulic retention times (HRTs) showed significant nutrient reduction when HRTs were longer than 1.1 days, especially between 2 and 4 days, but high organic matter levels limited zooplankton effectiveness to tertiary treatment.
  • * The impact of copper on Daphnia was analyzed, revealing that while they adapted to low copper levels, high concentrations (380 μg Cu L) for two weeks were detrimental to the system's health.

Article Abstract

The combination of the filtration capacity of zooplankton (e.g. Daphnia) with the nutrient removal capacity of bacterial/algal biofilm in a zooplankton-containing reactor could provide a natural-based alternative for wastewater treatment. A laboratory-scale zooplankton-based reactor was tested at different HRTs resulting in a significant reduction in nutrient concentrations in wastewater when the system was operated at HRTs longer than 1.1 days (preferably of between 2 and 4 days). However, the presence of high concentrations of organic matter (>250 mg COD L) in the wastewater inhibited zooplankton activity, limiting its use to tertiary treatment. Therefore, in combination with other natural treatments that can perform primary and secondary treatments, zooplankton may provide a solution for wastewater clarification and nutrient polishing. The effect of a common metal such as copper on the filtration capacity of Daphnia was also evaluated. Daphnia, as well as the whole zooplankton-based reactor, adapted to copper concentrations of up to 70 μg Cu L but an overload of 380 μg Cu L for two-weeks severely affected the biological system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.124683DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
8
filtration capacity
8
zooplankton-based reactor
8
wastewater
5
assessment zooplankton-based
4
zooplankton-based eco-sustainable
4
eco-sustainable wastewater
4
treatment laboratory
4
laboratory scale
4
scale combination
4

Similar Publications

Microplastics Exacerbated Conjugative Transfer of Antibiotic Resistance Genes during Ultraviolet Disinfection: Highlighting Difference between Conventional and Biodegradable Ones.

Environ Sci Technol

December 2024

Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China.

Microplastics (MPs) have been confirmed as a hotspot for antibiotic resistance genes (ARGs) in wastewater. However, the impact of MPs on the transfer of ARGs in wastewater treatment remains unclear. This study investigated the roles and mechanisms of conventional (polystyrene, PS) and biodegradable (polylactic acid, PLA) MPs in the conjugative transfer of ARGs during ultraviolet disinfection.

View Article and Find Full Text PDF

High-level nitrogen removal achieved by Feammox-based autotrophic nitrogen conversion.

Water Res X

May 2025

Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia.

Anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox) is an essential process in the geochemical iron and nitrogen cycling. This study explores Feammox-based nitrogen removal in a continuous laboratory up-flow bioreactor stimulated by intermittently adding 5 mM Fe(OH) at intervals of approximately two months. The feed was synthetic wastewater with a relatively low ammonium concentration (∼100 mg N/L), yet without organic carbon in order to test its autotrophic nitrogen removal performance.

View Article and Find Full Text PDF

An efficient co-culture of and for phenol degradation under high salt conditions.

Front Microbiol

December 2024

CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.

Phenol is one of the major organic pollutants in high salt industrial wastewater. The biological treatment method is considered to be a cost-effective and eco-friendly method, in which the co-culture of microalgae and bacteria shows a number of advantages. In the previous study, a co-culture system featuring () and () was established and could degrade 400 mg L phenol at 3% NaCl concentration.

View Article and Find Full Text PDF

Pinto beans, an underutilized legume, are abundant in protein content and contain a variety of beneficial phytonutrients. However, the commonly used protein extraction method, alkaline extraction, is associated with several drawbacks. These drawbacks include low extraction yield and purity as well as the production of large amounts of wastewater that can lead to environmental hazards.

View Article and Find Full Text PDF

Chlorinated coumarins, which are as cytotoxic as highly toxic halobenzoquinones toward CHO-K1 cells, have recently been identified as disinfection byproducts in drinking water disinfection processes. Therefore, detecting coumarins in water samples collected at various stages from drinking water treatment plants helps assess the formation of chlorinated coumarins in drinking water. Hence, a simple, rapid, accurate, and sensitive method for quantifying coumarins in water samples is required.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!