The first asymmetric total synthesis of new biphenylquinolizidine alkaloids 4″--demethyllythridine and 14--4″--demethyllythridine isolated from was accomplished. The key steps in the synthesis were a copper(I)-catalyzed asymmetric intramolecular aza-Michael reaction to build a chiral 4-arylquinolizidine unit and an intramolecular Suzuki-Miyaura cross-coupling reaction to construct a macrolactone ring comprising a biphenyl moiety.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.9b02962DOI Listing

Publication Analysis

Top Keywords

asymmetric total
8
total synthesis
8
synthesis biphenylquinolizidine
8
biphenylquinolizidine alkaloids
8
alkaloids 4″--demethyllythridine
8
4″--demethyllythridine 14--4″--demethyllythridine
8
14--4″--demethyllythridine asymmetric
4
14--4″--demethyllythridine isolated
4
isolated accomplished
4
accomplished key
4

Similar Publications

Flow chemistry-enabled asymmetric synthesis of cyproterone acetate in a chemo-biocatalytic approach.

Nat Commun

January 2025

Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.

Flow chemistry has many advantages over batch synthesis of organic small-molecules in terms of environmental compatibility, safety and synthetic efficiency when scale-up is considered. Herein, we report the 10-step chemo-biocatalytic continuous flow asymmetric synthesis of cyproterone acetate (4) in which 10 transformations are combined into a telescoped flow linear sequence from commercially available 4-androstene-3, 17-dione (11). This integrated one-flow synthesis features an engineered 3-ketosteroid-Δ-dehydrogenase (ReM2)-catalyzed Δ-dehydrogenation to form the C1, C2-double bond of A ring, a substrate-controlled Co-catalyzed Mukaiyama hydration of 9 to forge the crucial chiral C17α-OH group of D ring with excellent stereoselectivity, and a rapid flow Corey-Chaykovsky cyclopropanation of 7 to build the cyclopropyl core of A ring.

View Article and Find Full Text PDF

The asymmetric total synthesis of isolinearol, a -dolastane-type diterpenoid that inhibits byssal thread formation by mussels, has been achieved. In the synthesis, the key features include an intramolecular reductive nucleophilic addition using a low-valence titanium species and the direct installation of a ketone side chain. We evaluated their biological activities using the synthetic samples and found the novel inhibitory molecules with a simplified structure exhibit high inhibitory activities against byssus formation and low toxicities.

View Article and Find Full Text PDF

Data Checking of Asymmetric Catalysis Literature Using a Graph Neural Network Approach.

Molecules

January 2025

GSK Carbon Neutral Laboratories for Sustainable Chemistry, Jubilee Campus, University of Nottingham, Triumph Road, Nottingham NG7 2TU, UK.

The range of chemical databases available has dramatically increased in recent years, but the reliability and quality of their data are often negatively affected by human-error fidelity. The size of chemical databases can make manual data curation/checking of such sets time consuming; thus, automated tools to help this process are highly desirable. Herein, we propose the use of Graph Neural Networks (GNNs) to identifying potential stereochemical misassignments in the primary asymmetric catalysis literature.

View Article and Find Full Text PDF

Background/objectives: The failure of physiological left-right (LR) patterning, a critical embryological process responsible for establishing the asymmetric positioning of internal organs, leads to a spectrum of congenital abnormalities characterized by laterality defects, collectively known as "heterotaxy". biallelic variants have recently been associated with heterotaxy syndrome and congenital heart defects (CHD). However, the genotype-phenotype correlations and the underlying pathogenic mechanisms remain poorly understood.

View Article and Find Full Text PDF

Instability remains one of the most common indications for revision after total knee arthroplasty. To gain a better understanding of how an implant will perform in vivo and support surgeons in selecting the most appropriate implant design for an individual patient, it is crucial to evaluate the implant constraint within clinically relevant ligament and boundary conditions. Therefore, this study investigated the constraint of three different implant designs (symmetrical implants with and without a post-cam mechanism and an asymmetrical medial-stabilized implant) under anterior-posterior shear forces and internal-external rotation moments at different flexion angles in human cadaveric knees using a six-degrees-of-freedom joint motion simulator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!