The renin‑angiotensin system (RAS) serves an essential role in hypertension. MicroRNAs (miRs) have been reported to be important regulators in angiotensin (Ang) II‑dependent hypertension. We aimed to explore the roles of Ang II and miR‑133a in the mechanism underlying hypertension. Human umbilical vein endothelial cells (HUVECs) were identified by immunofluorescence staining. Cell viability and miR‑133a expression under the inhibition of Ang II of various concentrations were determined by an MTT assay and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), respectively. The effects of HUVECs transfected with miR‑133a mimic or inhibitor on Ang II‑induced apoptosis were measured using flow cytometry. The potential targeting of miR‑133a to the 3' untranslated region of (pro) renin receptor (PRR) was assessed using TargetScan and a dual‑luciferase assay. The effects of PRR interference using small interfering (si)RNA on PRR expression and the rate of apoptosis were determined by RT‑qPCR, western blotting and flow cytometry, respectively. Ang II at a concentration of 10‑5 M significantly inhibited the cell viability (P<0.05) and miR‑133a expression (P<0.01); Downregulation of miR‑133a suppressed cell viability. HUVECs transfected with miR‑133a mimic reduced the rate of Ang II‑induced apoptosis from 21.99 to 12.38%, but miR‑133a inhibitor promoted Ang II‑induced apoptosis (apoptosis rate, 28.9%). PRR was predicted to be a target gene of miR‑133a. Transfection with siPRR decreased the apoptotic rate in Ang II + negative control and Ang II + miR‑133a inhibitor group to 11.39 and 12.94%, respectively. Our findings also suggested that Ang II promoted PRR expression to enhance the apoptotic rate of HUVECs via the suppression of miR‑133a. Furthermore, siPRR efficiently decreased the Ang II‑induced apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691251PMC
http://dx.doi.org/10.3892/mmr.2019.10519DOI Listing

Publication Analysis

Top Keywords

pro renin
8
cell viability
8
flow cytometry
8
downregulated microrna‑133a
4
microrna‑133a induces
4
induces huvecs
4
huvecs injury
4
injury potential
4
potential role
4
role pro
4

Similar Publications

Cardiometabolic diseases (CMD) are leading causes of death and disability worldwide, with complex pathophysiological mechanisms in which inflammation plays a crucial role. This review aims to elucidate the molecular and cellular mechanisms within the inflammatory microenvironment of atherosclerosis, hypertension and diabetic cardiomyopathy. In atherosclerosis, oxidized low-density lipoprotein (ox-LDL) and pro-inflammatory cytokines such as Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) activate immune cells contributing to foam cell formation and arterial wall thickening.

View Article and Find Full Text PDF

(Pro)renin receptor (PRR) contains overlapping cleavage site for site-1 protease (S1P) and furin for generation of soluble PRR (sPRR). Although S1P-mediated cleavage mediates the release of sPRR, the functional implication of furin-mediated cleavage is unclear. Here we tested whether furin-mediated cleavage was required for the activity of sPRR in activating ENaC in cultured M-1 cells.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696.

View Article and Find Full Text PDF

Obesity is a rapidly growing health problem worldwide, affecting both adults and children and increasing the risk of chronic diseases such as type 2 diabetes, hypertension and cardiovascular disease (CVD). In addition, obesity is closely linked to chronic kidney disease (CKD) by either exacerbating diabetic complications or directly causing kidney damage. Obesity-related CKD is characterized by proteinuria, lipid accumulation, fibrosis and glomerulosclerosis, which can gradually impair kidney function.

View Article and Find Full Text PDF

Non-Hypertensive Effects of Aldosterone.

Int J Mol Sci

January 2025

Department of Hypertension and Diabetology, Medical University of Gdańsk, 80-214 Gdańsk, Poland.

Aldosterone, the primary adrenal mineralocorticoid hormone, as an integral part of the renin-angiotensin-aldosterone system (RAAS), is crucial in blood pressure regulation and maintaining sodium and potassium levels. It interacts with the mineralocorticoid receptor (MR) expressed in the kidney and promotes sodium and water reabsorption, thereby increasing blood pressure. However, MRs are additionally expressed in other cells, such as cardiomyocytes, the endothelium, neurons, or brown adipose tissue cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!