Flaxseed oil is rich in α-linolenic acid (ALA), which is the metabolic precursor of EPA and DHA. The present study investigated the effect of flaxseed oil supplementation on lipopolysaccharide (LPS)-induced muscle atrophy and carbohydrate oxidation impairment in a piglet model. Twenty-four weaned pigs were used in a 2 × 2 factorial experiment including dietary treatment (5 % maize oil v. 5 % flaxseed oil) and LPS challenge (saline v. LPS). On day 21 of treatment, the pigs were injected intraperitoneally with 100 μg/kg body weight LPS or sterile saline. At 4 h after injection, blood, gastrocnemius muscle and longissimus dorsi muscle were collected. Flaxseed oil supplementation increased ALA, EPA, total n-3 PUFA contents, protein:DNA ratio and pyruvate dehydrogenase complex quantity in muscles (P < 0·05). In addition, flaxseed oil reduced mRNA expression of toll-like receptor (TLR) 4 and nucleotide-binding oligomerisation domain protein (NOD) 2 and their downstream signalling molecules in muscles and decreased plasma concentrations of TNF-α, IL-6 and IL-8, and mRNA expression of TNF-α, IL-1β and IL-6 (P < 0·05). Moreover, flaxseed oil inclusion increased the ratios of phosphorylated protein kinase B (Akt) 1:total Akt1 and phosphorylated Forkhead box O (FOXO) 1:total FOXO1 and reduced mRNA expression of FOXO1, muscle RING finger (MuRF) 1 and pyruvate dehydrogenase kinase 4 in muscles (P < 0·05). These results suggest that flaxseed oil might have a positive effect on alleviating muscle protein loss and carbohydrates oxidation impairment induced by LPS challenge through regulation of the TLR4/NOD and Akt/FOXO signalling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0007114519002393 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!