Water scarcity is one of the greatest challenges facing human society. Because of the abundant amount of water present in the atmosphere, there are significant efforts to harvest water from air. Particularly, solar-driven atmospheric water generators based on sequential adsorption-desorption processes are attracting much attention. However, incomplete daytime desorption is the limiting factor for final water production, as the rate of water desorption typically decreases very quickly with decreased water content in the sorbents. Hereby combining tailored interfacial solar absorbers with an ionic-liquid-based sorbent, an atmospheric water generator with a simultaneous adsorption-desorption process is generated. With enhanced desorption capability and stabilized water content in the sorbent, this interfacial solar-driven atmospheric water generator enables a high rate of water production (≈0.5 L m h ) and 2.8 L m d for the outdoor environment. It is expected that this interfacial solar-driven atmospheric water generator, based on the liquid sorbent with a simultaneous adsorption-desorption process opens up a promising pathway to effectively harvest water from air.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201903378 | DOI Listing |
Nat Commun
January 2025
Institute of Artificial Intelligence for Meteorology, Chinese Academy of Meteorological Sciences, Beijing, China.
Skillful seasonal climate prediction is critical for food and water security over the world's heavily populated regions, such as in continental East Asia. Current models, however, face significant difficulties in predicting the summer mean rainfall anomaly over continental East Asia, and forecasting rainfall spatiotemporal evolution presents an even greater challenge. Here, we benefit from integrating the spatiotemporal evolution of rainfall to identify the most crucial patterns intrinsic to continental East-Asian rainfall anomalies.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA.
Dry deposition is an important yet poorly constrained process that removes reactive organic carbon from the atmosphere, making it unavailable for airborne chemical reactions and transferring it to other environmental systems. Using an aircraft-based measurement method, we provide large-scale estimates of total gas-phase organic carbon deposition rates and fluxes. Observed deposition rates downwind of large-scale unconventional oil operations reached up to 100 tC hour, with fluxes exceeding 0.
View Article and Find Full Text PDFPLoS One
January 2025
Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico, Ciudad de México, Mexico.
The analysis of carbon and nitrogen stable isotopes (δ13C and δ15N) has been widely used in ecology since it allows to identify the circulation of energy in a trophic network. The anchialine ecosystem is one of the less explored aquatic ecosystems in the world and stable isotope analysis represents a useful tool to identify the routes through which energy flows and to define the trophic niches of species. Sampling and data recording was conducted in one anchialine cave, Cenote Vaca Ha, near the town of Tulum, Quintana Roo, Mexico, where seven stygobitic species endemic to the anchialine caves of the Yucatan Peninsula, plus sediment, water and vegetation samples were analyzed to determine what the main nutrient sources are.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China.
The record-breaking 2019-2020 Australian wildfires have been primarily linked to climate change and its internal variability. However, the meteorological feedback mechanisms affecting smoke dispersion and wildfire emissions on a synoptic scale remain unclear. This study focused on the largest wildfires occurring between December 25, 2019 and January 10, 2020, under the enhanced subtropical high, when the double peak in wildfire evolution was favored by sustained low humidity and two synchronous increases in temperature and wind.
View Article and Find Full Text PDFMol Biol Rep
January 2025
School of Ocean Science and Engineering, The University of Southern Mississippi, Ocean Springs, MS, 39564, USA.
Background: The gray snapper (Lutjanus griseus) is a marine reef fish commonly found in coastal and shelf waters of the tropical and subtropical western Atlantic Ocean. In this work, a draft reference genome was developed to support population genomic studies of gray snapper needed to assist with conservation and fisheries management efforts.
Methods And Results: Hybrid assembly of PacBio and Illumina sequencing reads yielded a 1,003,098,032 bp reference across 2039 scaffolds with N50 and L50 values of 1,691,591 bp and 163 scaffolds, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!