Diarrhea is one of the most commonly reported adverse effect of hemotherapy and targeted cancer therapies, such as tyrosine kinase inhibitors (TKI), which often significantly impact patient quality of life, morbidity, and mortality. Neratinib is an oral, irreversible pan-HER tyrosine kinase inhibitor, which is clinically active in HER2-positive breast cancer. Diarrhea is the most common side effect of this potent anticancer drug and the reasons for this adverse effect are still largely unclear. We have recently shown that activation of the calcium-sensing Receptor (CaSR) can inhibit secretagogue-induced diarrhea in the colon, therefore we hypothesized that CaSR activation may also mitigate neratinib-induced diarrhea. Using an established ex vivo model of isolated intestinal segments, we investigated neratinib-induced fluid secretion and the ability of CaSR activation to abate the secretion. In our study, individual segments of the rat intestine (proximal, middle, distal small intestine, and colon) were procured and perfused intraluminally with various concentrations of neratinib (10, 50, 100 nmol L). In a second set of comparison experiments, intraluminal calcium concentration was modulated (from 1.0 to 5.0 or 7.0 mmol L), both pre- and during neratinib exposure. In a separate series of experiments R-568, a known calcimimetic was used CaSR activation and effect was compared to elevated Ca concentration (5.0 and 7.0 mmol L). As a result, CaSR activation with elevated Ca concentration (5.0 and 7.0 mmol L) or R-568 markedly reduced neratinib-induced fluid secretion in a dose-dependent manner. Pre-exposure to elevated luminal calcium solutions (5.0 and 7.0 mmol L) also prevented neratinib-induced fluid secretion. In conclusion, exposure to luminal neratinib resulted in a pronounced elevation in fluid secretion in the rat intestine. Increasing luminal calcium inhibits the neratinib-associated fluid secretion in a dose-dependent manner. These results suggest that CaSR activation may be a potent therapeutic target to reduce chemotherapy-associated diarrhea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6743423PMC
http://dx.doi.org/10.1002/prp2.521DOI Listing

Publication Analysis

Top Keywords

casr activation
20
fluid secretion
20
neratinib-induced fluid
12
calcium-sensing receptor
8
neratinib-induced diarrhea
8
tyrosine kinase
8
rat intestine
8
elevated concentration
8
concentration 70 mmol
8
secretion dose-dependent
8

Similar Publications

Soluble, circulating Klotho (sKlotho) is essential for normal health and renal function. sKlotho is shed from the renal distal convoluted tubule (DCT), its primary source, via enzymatic cleavage. However, the physiologic mechanisms that control sKlotho production, trafficking, and shedding are not fully defined.

View Article and Find Full Text PDF

Extracellular Ca is the first ligand that has been confirmed to function by activating the calcium-sensing receptor (CaSR), a member of G-protein coupled receptors. CaSR controls not only calcium homeostasis, but also plays a pivotal role in many cellular processes such as cell proliferation and apoptosis; moreover, it is implicated in the development of cardiovascular diseases. TGF-β/Smads signaling pathway is a classical pathway of renal fibrosis.

View Article and Find Full Text PDF

Background: Patients with ulcerative colitis (UC) exhibit abnormal amino acid (AA) metabolism. Taste receptors play a crucial role in the detection of intestinal AAs. Nevertheless, it remains unclear whether UC patients exhibit abnormal expression of these receptors in the colon.

View Article and Find Full Text PDF

Secondary hyperparathyroidism (sHPT) is a significant clinical complication of CKD leading to bone abnormalities and cardiovascular disease. Current treatment based on activating the parathyroid calcium-sensing receptor (CaSR) using calcimimetics such as Cinacalcet, aims to decrease plasma PTH levels and inhibit the progression of parathyroid hyperplasia. In the present study, we found significant diurnal rhythmicity of Casr, encoding the Cinacalcet drug target in hyperplastic parathyroid glands (p = 0.

View Article and Find Full Text PDF

Background: The calcium-sensitive receptor (CaSR) has been identified as a key factor in the formation of kidney stones. A substantial body of research has illuminated the function of CaSR in stone formation with respect to oxidative stress, epithelial injury, crystal adhesion, and stone-associated proteins. Nevertheless, as a pivotal molecule in renal calcium excretion, its pathway that contributes to stone formation by regulating calcium supersaturation remains underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!