Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The growth of neurites underlies the axonal pathfinding and synaptic formation during neuronal development and regeneration. Neurite growth is regulated by specific interactions between growth cone receptors and their ligands that function as molecular cues existing in microenvironments. Neurexins (NRXNs) are concentrated on growth cones and they may function to constrain axonal branches of invertebrate neurons. The present study explored the role of NRXN-1α in regulating neurite growth of mammalian neurons. Results showed that transfecting an effective NRXN-1α siRNA to cultured rat hippocampal neurons significantly increased neurite length. Adding NRXN-1α ligands including neuroligin (NLGN) peptide and/or α-latrotoxin (α-LTX) to the culture media largely decreased neurite growth of naïve neurons in a Ca-dependent manner, but had no effect on neurite growth of neurons transfected with NRXN-1α siRNA. Our results suggest that NRXN-1α regulates neurite development of mammalian neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6737430 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!