The simultaneous determination of xanthine (XA) and hypoxanthine (HXA) has been proved to be a feasible approach for the assessment of fish freshness. In this study, copper(II) nitrate and 1,3,5-benzenetricarboxylic acid (HBTC) were used as precursors to prepare various Cu-BTC frameworks with the addition of various amounts of triethylamine at room temperature. The characterization of X-ray diffraction, Fourier-transform infrared spectroscopy and Raman spectroscopy testified that the obtained materials are Cu-BTC frameworks. However, the amount of triethylamine had significant effects on the morphology, active response area and electron transfer ability of Cu-BTC frameworks. The oxidation behavior of XA and HXA demonstrated that the prepared Cu-BTC frameworks exhibited higher sensing activity, with greatly-enhanced oxidation signals. More importantly, the amount of triethylamine obviously affected the accumulation capacity and signal enhancement ability of Cu-BTCs toward XA and HXA, as confirmed from double potential step chronocoulometry. Based on the triethylamine-tuned signal amplification strategy of Cu-BTC frameworks, a highly-sensitive and simple electrochemical sensing system was developed for the assessment of fish freshness by simultaneous detection of XA and HXA. The developed sensing method was used in practical samples, and the results were validated by high-performance liquid chromatography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2019.07.064 | DOI Listing |
J Chromatogr A
January 2025
Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
This paper introduces an innovative technique for extracting pesticides from herbal infusions using a core-shell magnetic adsorbent (i.e., Cu-BTC@FeO) where achieving a notable enrichment factor for the target pesticides by coupling with a dispersive liquid-liquid microextraction method.
View Article and Find Full Text PDFInorg Chem
December 2024
School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China.
Mater Horiz
November 2024
School of Engineering, Ulster University, York St, Belfast BT15 1AP, UK.
This study provides a systematic and comprehensive investigation of the transformation process of copper-based metal-organic frameworks (Cu-BTC MOFs) into nanoporous copper oxides (P-CuO) through controlled calcination. While calcination is a well-established method for producing MOF-derived oxides, previous studies have primarily focused on their applications. Most of them often lack detailed exploration of the transformation process and decomposition mechanisms though it is crucial for achieving tunability in MOF-derived structures.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
The rGO/CMC/β-CD (RCβ) hydrogel was synthesized from reduced graphene oxide (rGO), β-cyclodextrin (β-CD) and sodium carboxymethyl cellulose (CMC) by radical polymerization. A novel hydrogel adsorbent was created by growing the metal-organic framework (Cu-BTC) in-situ on RCβ hydrogel, which has excellent adsorption capacities for cationic dyes in wastewater. The adsorption parameters such as the amount of adsorbent, pH of solution and adsorption time were optimized through batch adsorption experiments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran.
Hydrogel composites are water-swollen and three-dimensional materials that have been investigated for various biological applications, including controlled drug delivery and tissue engineering, owing to the similarity between their mechanical, electrical, and chemical properties with biological tissues. The hydrogel composites can provide a superior replication of living tissue compared to their single components. In this regard, Fe-BTC, Cu-BTC, and Zn-BTC MOFs were synthesized and modified with gallic acid (GA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!