Novel crude glycerol pretreatment for selective saccharification of sugarcane bagasse via fast pyrolysis.

Bioresour Technol

Guangdong Key Laboratory of New and Renewable Energy Research and Development, Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.

Published: December 2019

Pretreatment is a vital process for efficient saccharification and utilization of lignocellulose. In this study, crude glycerol derived from biodiesel production was used for pretreatment to facilitate selective saccharification via fast pyrolysis. Due to the efficient removal of alkali and alkaline earth metals (>95.0%) and lignin (79.4%) by crude glycerol pretreatment, the yield of levoglucosan was evaluated to 25.2% as compared to those from pure glycerol pretreated (14.4%) and untreated sugarcane bagasse (8.4%). Meanwhile, the production of inhibitors (e.g. acetic acid, phenol) to biocatalysts was also obviously inhibited from crude glycerol pretreated biomass. Consequently, this work provided a cost-effective and eco-friendly pretreatment mode, which could not only make full utilization of crude glycerol, but also improve the fermentability of lignocellulosic pyrolysate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.122094DOI Listing

Publication Analysis

Top Keywords

crude glycerol
20
glycerol pretreatment
8
selective saccharification
8
sugarcane bagasse
8
fast pyrolysis
8
glycerol pretreated
8
glycerol
6
pretreatment
5
novel crude
4
pretreatment selective
4

Similar Publications

Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.

View Article and Find Full Text PDF

Glycerol carbonate (GC) can be produced from glycerol (GL), a low-value byproduct in the biodiesel industry. In this work, continuous processes of GC production via transesterification from crude GL and diethyl carbonate (DEC) were developed using Aspen Plus. Two cases were considered, and their process performances were compared.

View Article and Find Full Text PDF

Metabolic engineering of Pseudomonas chlororaphis P3 for high-level and directed production of phenazine-1,6-dicarboxylic acid from crude glycerol.

Bioresour Technol

January 2025

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Phenazine-1,6-dicarboxylic acid (PDC) is a precursor of complex substituted phenazines used as pesticides and pharmaceuticals. The PDC biosynthesis exists the low production and the high proportion of by-products phenazine-1-carboxylic acid (PCA) derivatives in Pseudomonas P3△A. Herein, PDC production were improved by systematic metabolic engineering and synthetic regulation.

View Article and Find Full Text PDF

The aim of this study was to investigate the combination effects of α-glycerol monolaurate (GML) and glyceryl tributyrate (TB) on growth performance, nutrient digestibility, gut microbiota, and immune function in weaned piglets. A total of 120 weaned piglets with an average body weight (BW) of 6.88 kg were randomly allocated to one of the three dietary treatments: (1) CON: a basal diet; (2) 0.

View Article and Find Full Text PDF

Densification of biomass through pelletizing offers a promising approach to producing clean biofuels from renewable resources. This study, which investigates the impact of additive blends on wheat straw pellet making and upgrading the physiochemical properties, has revealed exciting possibilities. Five additives, including sawdust (SD), bentonite clay (BC), corn starch (S), crude glycerol (CG), and biochar (BioC), were chosen for this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!