The uses of halotolerant bacteria isolated from naturally saline habitats have the potential to be useful crop protection agents for plants in stressful conditions. These beneficial microbes generate several plant growth regulators and bioactive molecules, which enhance plant protection from adversities, such as plant pathogens, salts and metals stresses. In this study, 15 halotolerant bacterial strains endowed with important antimicrobial activities were isolated from Sfax solar saltern (Tunisia). All of these strains were characterized by biochemical and molecular tools aiming to investigate their in-vitro and in-vivo antifungal potentialities, plant growth promotion capabilities and metal tolerance abilities under saline stress condition. The 16S rRNA gene sequencing showed that the isolated strains were affiliated to different phylum and three species were described for the first time as plant growth promoting strains (Idiomarina zobelli FMH6v, Nesterenkonia halotolerans FMH10 and Halomonas janggokensis FMH54). The tested strains exhibited several potentialities: to tolerate high salt and heavy metal concentrations, to produce biosurfactants, exopolysaccharides and extracellular hydrolytic enzymes, to form biofilms and to liberate plant promoting substances. Eight strains were able to protect tomatoes fruits from the proliferation of the fungal disease caused by Botrytis cinerea and six strains improved plant vigor indexes. Principal component analysis showed an important correlation between in-vitro and in-vivo potentialities and two strains Bacillus velezensis FMH2 and Bacillus subtilis subsp. spizizenii FMH45 were statistically considered as the most effective strains in protecting plants from fungal pathogens attack and promoting the growth of tomatoes seedlings under saline and multi heavy-metals stress conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micres.2019.126331 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Earth Sciences, Montana State University, Bozeman, MT 59717.
Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.
Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!