Epithelial-mesenchymal transition (EMT) is considered to be one of the most important mechanisms for the progression of renal interstitial fibrosis (RIF). Recently the relationship between post-translational modifications and EMT has been reported. O-GlcNAcylation, one of the key post-translational modifications, was rarely mentioned about its role in EMT, especially in EMT during the process of RIF. The current study aimed to determine whether O-GlcNAcylation participates in the regulation of EMT during RIF. We proved that O-GlcNAcylation prompted the EMT of HK2 cells. Mass spectral analysis identified RAF1 to be one of the O-GlcNAcylated proteins. Moreover, O-GlcNAcylation of RAF1 stabilized RAF1 protein and prompted EMT of HK2 cells. In terms of mechanism, we verified that O-GlcNAcylation of RAF1 inhibited its ubiquitination and thus stabilized RAF1. The upregulation of RAF1 and O-GlcNAcylation products (O-GlcNAc) in vivo were also observed in unilateral ureteral obstruction (UUO) animal models. Collectively, our study indicated that O-GlcNAcylation suppressed the ubiquitination of RAF1, stabilized RAF1 and then modulated the EMT in HK2 cells. These results may give us several new targets for the treatment of RIF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2019.165556 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
March 2020
Department of Endocrinology & Metabolism, the 1st Affiliated Hospital, China Medical University, Shenyang 110001, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!