Usutu virus (USUV) previously restricted to Africa where it caused mild infections, emerged in 2001 in Europe and caused more severe infections among birds and humans with neurological forms, suggesting an adaptation and increasing virulence. This evolution suggests the need to better understand USUV transmission patterns for assessing risks and to develop control strategies. Phylogenetic analysis conducted in Africa showed low genetic diversity of African USUV strains except for one human and the USUV subtype (USUVsub) strains, which exhibited a deletion in the 3'UTR and nucleotide substitutions throughout the genome. Here we analyzed their viral replication in vitro in mosquito and mammalian cells, and vector competence of Culex quinquefasciatus, compared to a reference strain. Growth kinetics of the different strains showed comparable replication rates however variations in replication and translation efficiency were observed. Vector competence analysis showed that all strains were able to infect Culex quinquefasciatus the main peridomestic Culex species in Africa, with detection of USUV viral genomes and infectious particles. Dissemination and transmission were observed only for USUVsub, but infectious particles were not detected in Culex quinquefasciatus saliva. Our findings suggest that genetic variability can affect USUV in vitro replication in a cell type-dependent manner and in vivo in mosquitoes. In addition, the results show that Culex quinquefasciatus is not competent for the USUV strains analyzed here and also suggest an aborted transmission process for the USUVsub, which requires further investigations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virusres.2019.197753 | DOI Listing |
Given recent outbreaks of Oropouche virus in Latin America and >100 confirmed travel-associated cases in the United States, we evaluated the competence of US vectors, including Aedes albopictus, Culex quinquefasciatus, Culex pipiens, and Anopheles quadrimaculatus mosquitoes. Results with historic and recent isolates suggest transmission potential for those species is low.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India.
In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.
View Article and Find Full Text PDFProteins
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India.
Vector-borne diseases pose a severe threat to human life, contributing significantly to global mortality. Understanding the structure-function relationship of the vector proteins is pivotal for effective insecticide development due to their involvement in drug resistance and disease transmission. This study reports the structural and dynamic features of D1-like dopamine receptors (DARs) in disease-causing mosquito species, such as Aedes aegypti, Culex quinquefasciatus, Anopheles gambiae, and Anopheles stephensi.
View Article and Find Full Text PDFActa Trop
January 2025
Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania. Electronic address:
Vector-borne diseases pose significant threats to both human and animal health, including wildlife, particularly in vulnerable island ecosystems like the Galapagos Islands. This study examines the mosquito community composition around domestic dogs and Galapagos sea lion rookeries across four islands: San Cristobal, Isabela, Santa Cruz, and Floreana. Using BG-Sentinel traps, a total of 292 mosquitoes were collected, identifying three species: Culex quinquefasciatus, Aedes aegypti, and A.
View Article and Find Full Text PDFInfect Dis Poverty
January 2025
Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
Background: The cytochrome P450s-mediated metabolic resistance and the target site insensitivity caused by the knockdown resistance (kdr) mutation in the voltage-gated sodium channel (vgsc) gene were the main mechanisms conferring resistance to deltamethrin in Culex quinquefasciatus from Thailand. This study aimed to investigate the expression levels of cytochrome P450 genes and detect mutations of the vgsc gene in deltamethrin-resistant Cx. quinquefasciatus populations in Thailand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!