Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recurrent glioblastomas are frequently found near subventricular zone (SVZ) areas of the brain where neural stem cells (NSCs) reside, and glioblastoma-derived extracellular vesicles (EVs) are reported to play important roles in tumour micro-environment, but the details are not clear. Here, we investigated the possibility that NSCs are involved in glioblastoma relapse mediated by glioblastoma-derived EVs. We studied changes to NSCs by adding glioblastoma-derived EVs into a culture system of NSCs, and found that NSCs differentiated into a type of tumour-promoting cell. These transformed cells had distinguished proliferation activity, a high migration rate, and clone-forming ability revealed by CCK-8, wound healing and soft agar clone formation assays, respectively. In vivo assays indicated that these cells could accelerate tumour formation by Ln229 cells in nude mice. Moreover, to explore the mechanisms underlying NSC transformation, single cell transcriptome sequencing was performed; our results suggest that several key genes such as S100B, CXCL14, EFEMP1, SCRG1, GLIPR1, HMGA1 and CD44 and dysregulated signalling may be important for the transformation of NSCs. It is also indicated that NSCs may be involved in glioblastoma recurrence through EV release by glioblastoma in this work. This could help to illuminate the mechanism of glioblastoma relapse, which occurs in a brief period after surgical excision, and contribute to finding new ways to treat this disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.canlet.2019.09.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!