Equilibrium binding is believed to play an important role in directing the subsequent covalent attachment of many carcinogens to DNA. We have utilized UV spectroscopy to examine the non-covalent interactions of aflatoxin B1 and B2 with calf thymus DNA, poly(dAdT):poly(dAdT), and poly(dGdC):poly(dGdC), and have utilized NMR spectroscopy to examine non-covalent interactions of aflatoxin B2 with the oligodeoxynucleotide d(ATGCAT)2. UV-VIS binding isotherms suggest a greater binding affinity for calf thymus DNA and poly(dAdT):poly(dAdT) than for poly(dGdC):poly(dGdC). Scatchard analysis of aflatoxin B1 binding to calf thymus DNA in 0.1 M NaCl buffer indicates that binding of the carcinogen at levels of bound aflatoxin less than 1 carcinogen per 200 base pairs occurs with positive cooperativity. The cooperative binding effect is dependent on the ionic strength of the medium; when the NaCl concentration is reduced to 0.01 M, positive cooperativity is observed at carcinogen levels less than 1 carcinogen per 500 base pairs. The Scatchard data may be fit using a "two-site" binding model [L.S. Rosenberg, M.J. Carvlin, and T.R. Krugh, Biochemistry 25, 1002-1008 (1986)]. This model assumes two independent sets of binding sites on the DNA lattice, one a high affinity site which binds the carcinogen with positive cooperativity, the second consisting of lower affinity binding sites to which non-specific binding occurs. NMR analysis of aflatoxin B2 binding to d(ATGCAT)2 indicates that the aflatoxin B2/oligodeoxynucleotide complex is in fast exchange on the NMR time scale. Upfield chemical shifts of 0.1-0.5 ppm are observed for the aflatoxin B2 4-OCH3, H5, and H6a protons. Much smaller chemical shift changes (less than or equal to 0.06 ppm) are observed for the oligodeoxynucleotide protons. The greatest effect for the oligodeoxynucleotide protons is observed for the adenine H2 protons, located in the minor groove. Nonselective T1 experiments demonstrate a 15-25% decrease in the relaxation time for the adenine H2 protons when aflatoxin B2 is added to the solution. This result suggests that aflatoxin B2 protons in the bound state may be in close proximity to these protons, providing a source of dipolar relaxation. Further experiments are in progress to probe the nature of the aflatoxin B1 and B2 complexes with polymeric DNA and oligodeoxynucleotides, and to establish the relationship between the non-covalent DNA-carcinogen complexes observed in these experiments, and covalent aflatoxin B1-guanine N7 DNA adducts.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.1988.10506447DOI Listing

Publication Analysis

Top Keywords

binding
12
calf thymus
12
thymus dna
12
positive cooperativity
12
aflatoxin
11
equilibrium binding
8
dna
8
oligodeoxynucleotide datgcat2
8
spectroscopy examine
8
examine non-covalent
8

Similar Publications

Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.

View Article and Find Full Text PDF

The identification of neoantigens is crucial for advancing vaccines, diagnostics, and immunotherapies. Despite this importance, a fundamental question remains: how to model the presentation of neoantigens by major histocompatibility complex class I molecules and the recognition of the peptide-MHC-I (pMHC-I) complex by T cell receptors (TCRs). Accurate prediction of pMHC-I binding and TCR recognition remains a significant computational challenge in immunology due to intricate binding motifs and the long-tail distribution of known binding pairs in public databases.

View Article and Find Full Text PDF

A comprehensive benchmarking for evaluating TCR embeddings in modeling TCR-epitope interactions.

Brief Bioinform

November 2024

Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, 999077, China.

The complexity of T cell receptor (TCR) sequences, particularly within the complementarity-determining region 3 (CDR3), requires efficient embedding methods for applying machine learning to immunology. While various TCR CDR3 embedding strategies have been proposed, the absence of their systematic evaluations created perplexity in the community. Here, we extracted CDR3 embedding models from 19 existing methods and benchmarked these models with four curated datasets by accessing their impact on the performance of TCR downstream tasks, including TCR-epitope binding affinity prediction, epitope-specific TCR identification, TCR clustering, and visualization analysis.

View Article and Find Full Text PDF

Uncovering the intricacies of IGF-1 in Alzheimer's disease: new insights from regulation to therapeutic targeting.

Inflammopharmacology

January 2025

Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway.

View Article and Find Full Text PDF

Multi-omics sequencing of gastroesophageal junction adenocarcinoma reveals prognosis-relevant key factors and a novel immunogenomic classification.

Gastric Cancer

January 2025

Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.

Background: Gastroesophageal junction adenocarcinoma (GEJAC) exhibits distinct molecular characteristics due to its unique anatomical location. We sought to investigate effective and reliable molecular classification of GEJAC to guide personalized treatment.

Methods: We analyzed the whole genomic, transcriptomic, T-cell receptor repertoires, and immunohistochemical data in 92 GEJAC patients and delineated the landscape of genetic and immune alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!