Alginate Oligosaccharide (AOS) is a natural biological carbohydrate extracted from seaweed. In our study, Arabidopsis thaliana was used to evaluate the AOS-induced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Resistance was vitally enhanced at 25 mg/L in wild type (WT), showing the decreased disease index and bacteria colonies, burst of ROS and NO, high transcription expression of resistance genes PR1 and increased content of salicylic acid (SA). In SA deficient mutant (sid2), AOS-induced disease resistance dropped obviously compared to WT. The disease index was significantly higher than WT and the expression of recA and avrPtoB are two and four times lower than WT, implying that AOS induces disease resistance injecting Pst DC3000 after three days treatment by arousing the SA pathway. Our results provide a reference for the profound research and application of AOS in agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2019.115221DOI Listing

Publication Analysis

Top Keywords

pst dc3000
12
alginate oligosaccharide
8
oligosaccharide aos
8
arabidopsis thaliana
8
disease resistance
8
resistance
6
aos
4
aos induced
4
induced resistance
4
resistance pst
4

Similar Publications

Pseudomonas syringae lytic transglycosylase HrpH interacts with host ubiquitin ligase ATL2 to modulate plant immunity.

Cell Rep

January 2025

State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Pseudomonas syringae deploys a type III secretion system (T3SS) to deliver effector proteins to facilitate infection of plant cells; however, little is known about the direct interactions between T3SS components and plants. Here, we show that the specialized lytic transglycosylase (SLT) domain of P. syringae pv.

View Article and Find Full Text PDF

Plant extracellular vesicles contribute to the amplification of immune signals during systemic acquired resistance.

Plant Cell Rep

December 2024

Provincial Key University Laboratory of Plant-Microbe Interactions, College of Biology and Food, Shangqiu Normal University, Shangqiu, China.

Plant extracellular vesicles play a role in systemic acquired resistance by facilitating the transmission of immune signals between plant cells. Extracellular vesicles (EVs) play a critical role in facilitating the transfer of nucleic acids and proteins between plants and pathogens. However, the involvement of plant EVs in intercellular communication and their contribution to the regulation of physiological and pathological conditions in plants remains unclear.

View Article and Find Full Text PDF

In Arabidopsis thaliana, the transcription factors WRKY7, WRKY11 and WRKY17 act as negative defence regulators against Pseudomonas syringae pv. tomato (Pst) DC3000. However, their coordinated regulation of gene expression has yet to be fully explored.

View Article and Find Full Text PDF

Glycosyltransferase-Mediated Modulation of Reactive Oxygen Species Enhances Non-host Resistance to Pst DC3000 in Nicotiana benthamiana.

Physiol Plant

December 2024

Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China.

Non-host resistance (NHR) governs defense responses against a broad range of potential pathogen species in contrast with host resistance. To identify specific genes involved in disease resistance, we used a virus-induced gene-silencing screen in Nicotiana benthamiana and identified glycosyltransferase (NbGT) as an essential component of NHR. NbGT silencing enhanced the hypersensitivity response, reactive oxygen species response, and callose deposition in N.

View Article and Find Full Text PDF

LIM proteins are named after the initials of three proteins Lin-11, Isl-1, and MEC-3, which belong to a class of transcription factors that play an important role in the developmental regulation of eukaryotes and are also involved in a variety of life processes, including gene transcription, the construction of the cytoskeleton, signal transduction, and metabolic regulation. Plant LIM proteins have been shown to regulate actin bundling in different cells, but their role in immunity remains elusive. Mitogen-activated protein kinases (MAPKs) are a family of conserved serine/threonine protein kinases that link upstream receptors to their downstream targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!