Cancer immunotherapies have demonstrated durable responses in a range of different cancers. However, only a subset of patients responds to these therapies. We set out to test if non-invasive imaging of tumor perfusion and vascular inflammation may be able to explain differences in T-cell infiltration in pre-clinical tumor models, relevant for treatment outcomes. Tumor perfusion and vascular cell adhesion molecule (VCAM-1) density were quantified using magnetic resonance imaging (MRI) and correlated with infiltration of adoptively transferred and endogenous T-cells. MRI biomarkers were evaluated for their ability to detect tumor rejection 3 days after T-cell transfer. Baseline levels of these markers were used to assess their ability to predict PD-L1 treatment response. We found correlations between MRI-derived VCAM-1 density and infiltration of endogenous or adoptively transferred T-cells in some preclinical tumor models. Blocking T-cell binding to endothelial cell adhesion molecules (VCAM-1/ICAM) prevented T-cell mediated tumor rejection. Tumor rejection could be detected 3 days after adoptive T-cell transfer prior to tumor volume changes by monitoring the extracellular extravascular volume fraction. Imaging tumor perfusion and VCAM-1 density before treatment initiation was able to predict the response of MC38 tumors to PD-L1 blockade. These results indicate that MRI based assessment of tumor perfusion and VCAM-1 density can inform about the permissibility of the tumor vasculature for T-cell infiltration which may explain some of the observed variance in treatment response for cancer immunotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744528PMC
http://dx.doi.org/10.1016/j.neo.2019.08.003DOI Listing

Publication Analysis

Top Keywords

vcam-1 density
20
tumor perfusion
20
tumor
12
t-cell infiltration
12
treatment response
12
tumor rejection
12
cancer immunotherapies
8
imaging tumor
8
perfusion vascular
8
tumor models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!