A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dielectric nanosheet modified plasmonic-paper as highly sensitive and stable SERS substrate and its application for pesticides detection. | LitMetric

Dielectric nanosheet modified plasmonic-paper as highly sensitive and stable SERS substrate and its application for pesticides detection.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; National Synchrotron Radiation Research Center, Hsinchu, Taiwan. Electronic address:

Published: January 2020

The interaction of plasmonic nanoparticles with a dielectric platform gives rise to unique optical behaviors and this can be maneuvered to improve the plasmonic/SERS performances of a substrate. Herein, dielectric modified plasmonic-paper SERS substrate is developed by assembling Ag@SiO nanocubes on Fe-TiO nanosheets (NS) modified paper. The Fe-TiO NS being visible light responsive significantly alters the optical property of the paper and serves as a dielectric underlay for the Ag nanocubes. Hence, the incident light reflected back from the dielectric nanosheets couples with the scattered light from the Ag nanocubes leading to spatially enhanced electromagnetic field improving the SERS enhancement. The prepared dielectric modified plasmonic-paper has an average enhancement factor (EF) of 1.49 × 10 using R6G as a probe molecule. This value is superior to unmodified plasmonic-paper highlighting the coupling effect of the dielectric nanosheets. The substrate shows robust detection performance for thiabendazole and achieves a limit of detection (LOD) of 19 μg/L, which is 4-fold more sensitive than unmodified plasmonic paper. Direct swabbing test of thiabendazole sprayed apple fruit shows a discernible Raman signal down to 15 ppb indicating the utility of the substrate for point-of-need applications in food safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2019.117484DOI Listing

Publication Analysis

Top Keywords

modified plasmonic-paper
12
sers substrate
8
dielectric modified
8
dielectric nanosheets
8
dielectric
7
substrate
5
dielectric nanosheet
4
modified
4
nanosheet modified
4
plasmonic-paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!