Plant essential oils are regarded as interesting alternative tools to be integrated into the management of pest insects. However, as they generally consist of mixtures of numerous molecules, the physiological basis for their action is unresolved. Here, we evaluated the effects of essential oil of the Neotropical plant Siparuna guianensis Aubl., commonly known as Negramina, against an important pest insect: the green peach aphid Myzus persicae (Sulzer), and also in two non-target natural enemies: the ladybeetle predators Coleomegilla maculata (DeGeer) and Eriopis connexa (Germar). In addition, we conducted a computational docking analysis for predicting the physical interactions between the two Negramina essential oil major constituents: β-myrcene and 2-undocanone, and the transient receptor potential (TRP) channels as potential binding receptors in the aphid and ladybeetles. As the most important results, Negramina essential oil caused mortality in M. persicae aphids with an LC = 1.08 mg/cm, and also significantly repelled the aphids at concentrations as low as 0.14 mg/cm. Our computational docking analysis reinforced such selectivity actions as the Negramina essential oil major compounds (i.e., β-myrcene and 2-undocanone) bound to the TRP channels of M. persicae but not to ladybeetle-related TRP channels. Interestingly, the exposure to the Negramina essential oil did not affect the predatory abilities of C. maculata but increased the abilities of E. connexa to prey upon M. persicae. Collectively, our findings provided a physiological basis for the insecticidal and selectivity potential of Negramina essential oil, reinforcing its potential as a tool to be used in integrated pest control programs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2019.113153DOI Listing

Publication Analysis

Top Keywords

essential oil
28
negramina essential
20
trp channels
12
essential
8
siparuna guianensis
8
predatory abilities
8
physiological basis
8
computational docking
8
docking analysis
8
oil major
8

Similar Publications

Lemongrass (Poaceae) is one of the aromatic plants with strong odors. Traditionally, lemon grass oil has been used for the treatment of many diseases such as gastrointestinal cramps, high blood pressure, high body temperatures, and fatigue, and is also considered an antibacterial and anti-diarrheal agent. Therefore, this study aims to investigate volatile active constituents and a few important biological activities of the volatile oil of lemongrass (Cymbopogon citratus) grown in Oman.

View Article and Find Full Text PDF

Introduction: Cymbopogon martini, Syzygium aromaticum, and Cupressus sempervirens are used for antimicrobial purposes in the worldwide. Both their extracts and essential oil contents are rich in active ingredients.

Objective: The aim of this study was to investigate the inhibitory effect of Cymbopogon martini essential oil (CMEO), Syzygium aromaticum essential oil (SAEO) and Cupressus sempervirens essential oil (CSEO) on Candida albicans biofilm formation on heat-polymerized polymethyl methacrylate (PMMA) samples in vitro and in silico.

View Article and Find Full Text PDF

Accurately predicting the phase behavior and properties of reservoir fluid plays an essential role in the simulation of petroleum recovery processes. Similar to the inaccurate liquid-density prediction issue in the isobaric-isothermal (PT) phase equilibrium calculations, an inaccurate pressure prediction issue can also be observed in isothermal-isochoric (VT) phase equilibrium calculations which involves a liquid phase. In this work, a practical methodology is proposed to incorporate a volume-translated equation of state in VT phase equilibrium calculations for more accurate pressure predictions.

View Article and Find Full Text PDF

Potential of lavender essential oil to inhibit tetracycline resistance and modulate gut microbiota in black soldier fly larvae.

J Hazard Mater

January 2025

Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, China. Electronic address:

The misuse of tetracycline in livestock farming leads to environmental residues that promote the proliferation of antibiotic resistance genes (ARGs), particularly tetracycline resistance (tet) genes. Black soldier fly (BSF) larvae, used for organic waste bioconversion, may carry tetracycline residues in their guts, raising concerns about ARG spread. To address this issue, plant-derived additives such as lavender essential oil (LEO) have been explored as alternative antibiotics.

View Article and Find Full Text PDF

The urgent need to address the growing problem of antimicrobial resistance in multidrug-resistant bacteria requires the development of pioneering approaches to treatment. The present study aims to evaluate the antimicrobial potential of the essential oils (EOs) of Moringa oleifera (moringa), Cinnamomum verum (cinnamon), and Nigella sativa (black seed) and the synergistic effect of the mixture of these oils against Staphylococcus aureus MCC 1351. Statistical modeling revealed cinnamon oil had the highest individual antimicrobial potency, followed by black seed oil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!