In this paper, Co-Al layered double hydroxides (LDHs), Co-Al LDHs/poly(o-phenylenediamine) (PoPD) and Ag nanoparticles decorated Co-Al LDHs/PoPD (Ag@Co-Al LDH/PoPD) samples were prepared. The as-prepared samples were characterized by XRD, Raman, XPS, FT-IR, DRS-UV-Vis, PL and TGA techniques. The salient features of morphology and size of the samples were determined using FESEM, and HR-TEM. Then, the samples were coated on glassy carbon electrode (GCE) and employed for sensing of 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP)) and uric acid (UA). It was found that Ag@Co-Al LDH/PoPD/GCE showed superior electrochemical sensing behaviour than other modified electrodes. It exhibits the detection limit (DL) of 63 nM, 50 nM and 0.28 µM for 4-NP, 2,4-DNP and UA respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6744444PMC
http://dx.doi.org/10.1038/s41598-019-49595-yDOI Listing

Publication Analysis

Top Keywords

layered double
8
double hydroxides
8
uric acid
8
fabrication ag@co-al
4
ag@co-al layered
4
hydroxides reinforced
4
reinforced polyo-phenylenediamine
4
polyo-phenylenediamine nanohybrid
4
nanohybrid efficient
4
efficient electrochemical
4

Similar Publications

Innovative spherical Fe-Mn layered double hydroxides (LDH) for the degradation of sulfisoxazole through activated periodate: Efficacy and mechanistic insights.

Environ Pollut

December 2024

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Advanced oxidation technology based on peroxides is widely regarded as an efficient method for treating emerging contaminants. However, the precise mechanism by which layered double hydroxides (LDHs) enhance oxidant activation requires further investigation. In this study, a spherical Fe-Mn LDH (S-FML) with improved crystallinity using a simple hydrothermal method.

View Article and Find Full Text PDF

Development and stability of W1/O/W2 double emulsions stabilized by food-grade nanoparticles.

Food Chem

December 2024

Nano-biotechnology Key Laboratory of Hebei Province, State Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China. Electronic address:

This study presented the well stable W1/O/W2 double emulsions stabilized by food-grade nanoparticles. Firstly, the nanoparticles were prepared based on soybean protein isolate and Hohenbuehelia serotina polysaccharides by physical effects, which had the elliptical morphology and the average particle size of 639.96 nm.

View Article and Find Full Text PDF

Highly Strained Polymeric Monolayer Stacked for Wafer-Scale and Transferable Nanodielectrics.

ACS Nano

December 2024

Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.

As the keystones of molecular electronics, high-quality nanodielectric layers are challenging to assemble due to the strictest criteria for their reliability and uniformity over a large area. Here, we report a strained poly(4-vinylphenol) monolayer, ready to be stacked to form defect-free wafer-scale nanodielectrics. The thickness of the nanodielectrics can be precisely adjusted in integral multiples of the 1.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Sustainable development is a hot topic of global concern and sustainable human settlements (HS) are crucial to people's happiness. Thus, strengthening the construction of HS will help enrich human settlements geography with theories of HS interactions, clarify the existing problems of the Chengdu-Chongqing urban agglomeration (CC), promote the harmonization of the human-land relationship, and realize the SDGs. The results were as follows.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!