Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
coinfection is a major cause of mortality in influenza pandemics. Growing evidence shows that uncontrolled immune response results in severe tissue damage and thereby promotes death in coinfection. Progranulin (PGRN) is widely expressed in immune and epithelial cells and exerts anti-inflammatory role in many diseases. We found that PGRN levels were significantly elevated in clinical influenza/-coinfected patients. C57BL/6 wild-type (WT) and PGRN-deficient (PGRN) mice were infected with influenza virus PR8 and then superchallenged with serotype 19F. Coinfected PGRN mice showed increased mortality and weight loss compared with WT mice. PGRN deficiency led to increased bacterial loads in lungs without altering influenza virus replication, suggesting a role of PGRN in decreasing postinfluenza susceptibility to coinfection. Administration of recombinant PGRN improved survival of WT and PGRN mice in lethal coinfection. Additionally, loss of PGRN resulted in aggravated lung damage along with massive proinflammatory cytokine production and immune cell infiltration during coinfection. Endoplasmic reticulum stress (ERS) during influenza, and coinfection was strongly induced in PGRN mice that subsequently activated apoptosis signaling pathways. Treatment of recombinant PGRN or inhibition of ERS by 4-phenylbutyrate decreased apoptosis and bacterial loads in lungs of coinfected mice. These results suggest that PGRN decreases postinfluenza susceptibility to coinfection via suppressing ERS-mediated apoptosis. Impaired bacterial clearance and increased lung inflammation are associated with the lethal outcome of coinfected PGRN mice. Our study provides therapeutic implication of PGRN to reduce morbidity and mortality in influenza/ coinfection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.1900248 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!