Long non-coding RNAs (lncRNAs) have structural and regulatory effects on RNA-binding proteins (RBPs). However, the mechanisms by which lncRNAs regulate the neurodegenerative-causative RBP like FUS protein remain poorly understood. Here, we show that knockdown of the lncRNA causes a shift in the methylation status of human FUS from mono- (MMA) to di-methylated (DMA) arginine via upregulation of the arginine methyltransferase 5 (PRMT5, known as ART5 in flies). We found this novel regulatory role to be critical for FUS toxicity since the PRMT5-dependent dimethylation of FUS is required for its proteasomal degradation and causes a reduction of high levels of FUS. Moreover, we show that an increase of FUS causes a decline of both (known as ART1 in flies) and transcripts, leading to an accumulation of neurotoxic MMA-FUS. Therefore, overexpression of either PRMT1 or PRMT5 is able to rescue the FUS toxicity. These results highlight a novel role of lncRNAs in post-translation modification (PTM) of FUS and suggest a causal relationship between lncRNAs and dysfunctional PRMTs in the pathogenesis of FUSopathies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826006 | PMC |
http://dx.doi.org/10.1242/jcs.236836 | DOI Listing |
Lancet Neurol
February 2025
Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, Leuven, Belgium. Electronic address:
Autosomal dominant mutations in the gene encoding the DNA and RNA binding protein FUS are a cause of amyotrophic lateral sclerosis (ALS), and about 0·3-0·9% of patients with ALS are FUS mutation carriers. FUS-mutation-associated ALS (FUS-ALS) is characterised by early onset and rapid progression, compared with other forms of ALS. However, different pathogenic mutations in FUS can result in markedly different age at symptom onset and rate of disease progression.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands.
Background: Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that utilize the ubiquitin-proteasome system to selectively degrade target proteins. This innovative technology has shown remarkable efficacy and specificity in degrading oncogenic proteins and has progressed through various stages of preclinical and clinical development for hematologic malignancies, including adult acute myeloid leukemia (AML). However, the application of PROTACs in pediatric AML remains largely unexplored.
View Article and Find Full Text PDFBiomedicines
January 2025
Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania.
Despite the massive efforts of modern medicine to stop the evolution of Alzheimer's disease (AD), it affects an increasing number of people, changing individual lives and imposing itself as a burden on families and the health systems. Considering that the vast majority of conventional drug therapies did not lead to the expected results, this review will discuss the newly developing therapies as an alternative in the effort to stop or slow AD. Focused Ultrasound (FUS) and its derived Transcranial Pulse Stimulation (TPS) are non-invasive therapeutic approaches.
View Article and Find Full Text PDFParasitol Int
January 2025
Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt. Electronic address:
Background/objective: Theileria orientalis is a non-transforming Theileria species infecting cattle and water buffaloes. Several outbreaks of oriental theileriosis accompanied by considerable economic loss were documented in Asia, Australia, and New Zealand. The major piroplasm surface protein (MPSP) gene has frequently been used to molecularly characterize T.
View Article and Find Full Text PDFJ Neurosurg
January 2025
Departments of1Neurological Surgery and.
The infiltrative and diffuse nature of gliomas makes complete resection unfeasible. Unfortunately, regions of brain parenchyma with residual, infiltrative tumor are protected by the blood-brain barrier (BBB), making systemic chemotherapies, small-molecule inhibitors, and immunotherapies of limited efficacy. Low-frequency focused ultrasound (FUS) in combination with intravascular microbubbles can be used to disrupt the BBB transiently and selectively within the tumor and peritumoral region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!