Objective: To develop and validate a novel, machine learning-derived model to predict the risk of heart failure (HF) among patients with type 2 diabetes mellitus (T2DM).
Research Design And Methods: Using data from 8,756 patients free at baseline of HF, with <10% missing data, and enrolled in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, we used random survival forest (RSF) methods, a nonparametric decision tree machine learning approach, to identify predictors of incident HF. The RSF model was externally validated in a cohort of individuals with T2DM using the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT).
Results: Over a median follow-up of 4.9 years, 319 patients (3.6%) developed incident HF. The RSF models demonstrated better discrimination than the best performing Cox-based method (C-index 0.77 [95% CI 0.75-0.80] vs. 0.73 [0.70-0.76] respectively) and had acceptable calibration (Hosmer-Lemeshow statistic χ = 9.63, = 0.29) in the internal validation data set. From the identified predictors, an integer-based risk score for 5-year HF incidence was created: the WATCH-DM (Weight [BMI], Age, hyperTension, Creatinine, HDL-C, Diabetes control [fasting plasma glucose], QRS Duration, MI, and CABG) risk score. Each 1-unit increment in the risk score was associated with a 24% higher relative risk of HF within 5 years. The cumulative 5-year incidence of HF increased in a graded fashion from 1.1% in quintile 1 (WATCH-DM score ≤7) to 17.4% in quintile 5 (WATCH-DM score ≥14). In the external validation cohort, the RSF-based risk prediction model and the WATCH-DM risk score performed well with good discrimination (C-index = 0.74 and 0.70, respectively), acceptable calibration ( ≥0.20 for both), and broad risk stratification (5-year HF risk range from 2.5 to 18.7% across quintiles 1-5).
Conclusions: We developed and validated a novel, machine learning-derived risk score that integrates readily available clinical, laboratory, and electrocardiographic variables to predict the risk of HF among outpatients with T2DM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7364669 | PMC |
http://dx.doi.org/10.2337/dc19-0587 | DOI Listing |
Anesth Analg
February 2025
SC Terapia Intensiva Neurochirurgica, Ospedale San Carlo Borromeo, ASST Santi Paolo e Carlo, Milano, Italy.
Background: Computed tomography (CT)-derived low muscle mass is associated with adverse outcomes in critically ill patients. Muscle ultrasound is a promising strategy for quantitating muscle mass. We evaluated the association between baseline ultrasound rectus femoris cross-sectional area (RF-CSA) and intensive care unit (ICU) mortality.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Emergency Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
As the elderly population expands, enhancing emergency department (ED) care by assessing frailty becomes increasingly vital. To address this, we developed a novel electronic Frailty Index (eFI) from ED health records, specifically designed to assess frailty and predict hospitalization, in-hospital mortality, ICU admissions, and 30-day ED readmissions. This retrospective, single-center study included patients 65 years old or older who presented to the ED of IRCCS Humanitas Research Hospital in Milan, Italy, between January 2015 and December 2019.
View Article and Find Full Text PDFSleep Breath
January 2025
Department of Respiratory and Critical Care Medicine, Medical School of Nantong University, Nantong Key Laboratory of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China.
Background: The pathophysiology of obstructive sleep apnea (OSA) and diabetes mellitus (DM) is still unknown, despite clinical reports linking the two conditions. After investigating potential roles for DM-related genes in the pathophysiology of OSA, our goal is to investigate the molecular significance of the condition. Machine learning is a useful approach to understanding complex gene expression data to find biomarkers for the diagnosis of OSA.
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
Objectives: This study aimed to evaluate whether minimum-intensity projection (MinIP) images could predict complications in CT-guided lung biopsies.
Methods: We retrospectively analyzed 72 procedures from January 2019 to December 2023, categorizing patients by pneumothorax and the severity of hemorrhage (grade 2 or higher). Radiodensity measurements were performed using lung window (LW) and MinIP (10-mm slab) images.
Discov Oncol
January 2025
Department of Medical Imaging, Shenzhen Longhua District Key Laboratory of Neuroimaging, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
Background: Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with poor prognosis and limited treatment options. Despite advances in understanding its molecular mechanisms, effective therapeutic strategies remain elusive due to the tumor's genetic complexity and heterogeneity.
Methods: This study employed a comprehensive analysis approach integrating 113 machine learning algorithms with Mendelian Randomization (MR) analysis to investigate the molecular underpinnings of GBM.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!