Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Xanthomonas campestris pv.campestris (Xcc) is the causative agent of black rot, a disease that causes serious damage to plants from Brassicaceae family. However, there are no chemicals or biological agent commercially registered for the control of this disease. Thus, this study aimed to evaluate the antimicrobial activity and chemical composition of Lippia gracilis essential oils (EOs) on Xcc aiming its use as effective biological control. We also investigated the effect of EOs on the integrity of the bacterial cytoplasmic membrane. Chemical analysis by GC/MS showed that the major compounds of the seven EOs of L. gracilis are thymol or carvacrol. The seven genotypes showed inhibition of bacterial growth with MIC from 700 μg.ml to 1000 μg.ml, with the genotype LGRA-106 (rich in Thymol) with higher antimicrobial activity. The MIC for thymol and carvacrol were 250 μg.ml. After exposure to LGRA-106 EO (2×, 1×, 1/2×, 1/4×, and 1/8 x MIC for 5 min, it was observed a decreased cell viability and increased pI fluorescence, which indicates damage to the cytoplasmic cell membrane. This study demonstrates that L. gracilis EOs have antimicrobial activity and have a potential to be used in the control of black rot. Furthermore this antimicrobial activity is due, at least in part, to bacterial cytoplasmic membrane damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pestbp.2019.06.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!