Novel porous covalent organic frameworks (COFs) were synthesized via a facile approach at room temperature by using 1,3,5-tris(4-aminophenyl)benzene and 2,3,5,6-tetrafluoroterephthalaldehyde as two building blocks for the first time. And the COFs were applied as dispersive solid phase extraction (dSPE) adsorbents for the extraction of six nitroaromatic compounds (NACs) from diverse water samples. The COFs were characterized by scanning electron microscopy (SEM), energy dispersive spectrum (EDS), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), the nitrogen adsorption-desorption isotherms and Zeta potentiometric analysis. The results indicated that the COFs possessed high specific surface area, good thermal and chemical stability. Moreover, some parameters (including adsorbent dosage, extraction time, pH, ion strength, desorption solvent, desorption time and desorption frequency) which influenced the extraction efficiencies of NACs were investigated in details. By combining COFs-based dSPE with HPLC-DAD analysis, a simple, fast and effective method was developed for the extraction and determination of six NACs. The method demonstrated good linearity in the range of 0.01-50 μg mL (R > 0.9973) with low limits of quantification (0.1-0.25 μg mL, S/N = 10) and low limits of detection (0.03-0.09 μg mL, S/N = 3). Good precision with relative standard deviations (RSD) lower than 3.56% for intra-day and 4.78% for inter-day were also obtained. Finally, COFs-based dSPE was applied to the effective extraction of six NACs from three kinds of actual water samples, and good recoveries (ranged from 84.00 to 112.29%) were observed. These results demonstrated that the COFs had promising potential to be adsorbents for dSPE of NACs in complex samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2019.07.071DOI Listing

Publication Analysis

Top Keywords

water samples
12
porous covalent
8
covalent organic
8
organic frameworks
8
effective extraction
8
extraction nitroaromatic
8
nitroaromatic compounds
8
cofs-based dspe
8
low limits
8
extraction
7

Similar Publications

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

Antifungal activity of different extractions of drone larvae (apilarnil).

Nat Prod Res

January 2025

Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.

Drone larvae (DL) has many biological activities thanks to the bioactive components it contains, but there are very few studies on its antimicrobial activity. The aim of this research was to determine the antifungal activity of DL (raw and lyophilised) water and ethanol extracts against fluconazole (FLU) sensitive and resistant yeast strains. The 87 fungal strains obtained from clinical samples were identified by phenotypic and molecular methods, and broth microdilution test was used for antifungal activity.

View Article and Find Full Text PDF

Aim: This study aimed to explore the possible bidirectional interrelations between fructose-induced metabolic syndrome (MS) and apical periodontitis (AP).

Methodology: Twenty-eight male Wistar rats were distributed into four groups (n = 7, per group): Control (C), AP, Fructose Consumption (FRUT) and Fructose Consumption and AP (FRUT+AP). The rats in groups C and AP received filtered water, while those in groups FRUT and FRUT+AP received a 20% fructose solution mixed with water to induce MS.

View Article and Find Full Text PDF

Quantifying the Impact of Soil Moisture Sensor Measurements in Determining Green Stormwater Infrastructure Performance.

Sensors (Basel)

December 2024

Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.

The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system's water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!