Background: High vascularization is a major characteristic of renal cell carcinoma (RCC). Thus, exploration of molecules promoting the tumor vascularization in RCC is urgent. Yes-associated Protein (YAP) is an oncogene in many cancer types, and high YAP expression was correlated with worse overall survival of RCC patients according to The Cancer Genome Atlas (TCGA) database. However, whether YAP promotes tumor angiogenesis of RCC is still unknown.
Methods: Western blotting assay, real-time Quantitive PCR analysis, and ELISA assay were used to detect the related gene expression. The function of YAP on tumor angiogenesis was investigated by HUVEC recruitment, tube formation, and rabbit cornea assay. The clinical relevance of several genes was analyzed in a public database.
Results: knockdown of YAP decreased RCC cell-inducing HUVEC recruitment and tube formation. Moreover, tumor angiogenesis ability of 786-O cells was crippled by YAP knockdown in vivo. In addition, the expression of Vascular endothelial growth factors A (VEGFA) was positively correlated with YAP expression in RCC tumor tissues, and YAP promoted expression and secretion of VEGFA in RCC cells. Mechanistically, GLI family zinc finger 2 (Gli2) knockdown in RCC cells reduced both basic and YAP-induced VEGFA expression, HUVECs recruitment, and tube formation, indicating that Gli2 is necessary for YAP to promote expression of VEGFA.
Conclusion: Taken together, our results demonstrate that YAP/Gli2 promotes VEGFA expression and tumor angiogenesis in RCC cells, which could provide novel therapeutic targets in RCC treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arcmed.2019.08.010 | DOI Listing |
Am J Chin Med
January 2025
School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine (NJUCM), Nanjing, Jiangsu, P. R. China.
Colorectal cancer, characterized by its high incidence, concealed early symptoms, and poor prognosis at advanced stages, ranks as the third leading cause of cancer-related deaths worldwide. (AM) refers to the dried roots of (Fisch.) Bge.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea. Electronic address:
Glucose-regulated protein 94 (GRP94) overexpression plays a critical role in tumor cell survival across various cancers. Previously, we developed K101.1, a fully human antibody targeting cell surface GRP94, which effectively inhibits tumor angiogenesis in colorectal cancer (CRC).
View Article and Find Full Text PDFCell Commun Signal
January 2025
Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
Background: Neuropilin-1 (NRP1) is a transmembrane protein involved in surface receptor complexes for a variety of extracellular signals. NRP1 expression in human cancers is associated with prominent angiogenesis and advanced progression stage. However, the molecular mechanisms underlying NRP1 activity in the tumor microenvironment remain unclear.
View Article and Find Full Text PDFCytotechnology
April 2025
Department of Genetics, Osmania University, Hyderabad, Telangana State India.
Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
Emerging evidence demonstrates that inducing ferroptosis, a nonapoptotic programmed cell death mode, holds significant potential for tumor treatment. However, current ferroptosis strategies utilizing exogenous Fenton-type heavy metal species or introducing glutathione (GSH)/glutathione peroxidase 4 (GPX4) suppressants are hampered by latent adverse effects toward organisms, while utilizing endogenous iron may cause undesirable tumor angiogenesis through specific signaling pathways. Here, a ferric ion (Fe)-responsive and DNAzyme-delivered coordination nanosystem (ZDD) is developed to achieve a novel scheme of synergistic tumor-specific ferroptosis and gene therapy, which modulates and harnesses the endogenous iron in tumors for inducing ferroptosis while intercepting tumor angiogenesis to enhance therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!