Because of the Fukushima Dai-ichi Nuclear Power Plant accident, forest ecosystems in wide areas were contaminated with Cs. It is important to characterize the behavior of Cs after its deposition onto forest surface environments for evaluating and preventing long-term radiation risks. In the present study, Cs vertical distributions in the soil profile were observed repeatedly at five forest sites with different vegetation types for 4.4 years after the accident in 2011, and Cs migration in the organic layer and mineral soil was analyzed based on a comparison of models and observations. Cesium-137 migration from the organic layer to the underlying mineral soil was represented by a two-component exponential model. Cesium-137 migration from the organic layer was faster than that observed in European forests, suggesting that the mobility and bioavailability of Cs could be suppressed rapidly in Japanese forests. At all sites, Cs transfer in mineral soil could be reproduced by a simple diffusion equation model with continuous Cs supply from the organic layer. The diffusion coefficients of Cs in the mineral soil were estimated to be 0.042-0.55 cm y, which were roughly comparable with those of European forest soils affected by the Chernobyl Nuclear Power Plant accident. Model predictions using the determined model parameters indicated that 10 years after the accident, more than 70% of the deposited Cs will migrate to the mineral soil but only less than 10% of the total Cs inventory will penetrate deeper than 10 cm in the mineral soil across all sites. The results of the present study suggest that the Cs deposited onto Japanese forest ecosystems will be retained in the surface layers of mineral soil for a long time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2019.106040 | DOI Listing |
Glob Chang Biol
January 2025
University of Münster, Institute of Landscape Ecology, Münster, Germany.
Temperate forests cover 25% of the world's forest area and most of them are managed for timber production. To increase yields, native deciduous trees have been commonly replaced by fast-growing conifers, especially in Western and Central Europe. Despite the importance of forest soils for a variety of ecosystem functions, the effects of forest management intensity on soil biological processes have not yet been sufficiently understood.
View Article and Find Full Text PDFPol J Vet Sci
June 2024
Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovak Republic.
The present study was conducted to evaluate the effect of humic substances on performance and selected blood biochemical parameters in turkeys. A total of twenty 6-week-old turkey hybrids (Big 6) were divided into two groups. The first group of turkeys was fed the basal diet without any supplementation of humic substances as a control group.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
October 2024
Department of Environmental Biotechnology, Biotechnology Research Center, Al-Nahrain University, 10018 Baghdad, Iraq.
Background: Contamination with crude oil and hydrocarbons has become a global threat. Such threats have urged us to invent solutions to deal with this dilemma. However, chemical treatment comes with limited benefits.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan 430070, China. Electronic address:
Organoarsenicals are toxic pollutants of global concern, and their environmental geochemical behavior might be greatly controlled by iron (Fe) (hydr)oxides through coprecipitation, which is rarely investigated. Here, the effects of the incorporation of dimethylarsenate (DMAs(V)), a typical organoarsenical, into the ferrihydrite (Fh) structure on the mineral physicochemical properties and Fe(II)-induced phase transformation of DMAs(V)-Fh coprecipitates with As/Fe molar ratios up to 0.0876±0.
View Article and Find Full Text PDFEnviron Res
December 2024
College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China. Electronic address:
The ongoing weathering of metal sulfides has substantially posed threats to the eco-systems. For remediating metal sulfides-contaminated soils, phytostabilization is a promising nature-based technique that immobilizing heavy metals (HMs) that dissolved from metal sulfides in the rhizosphere, preventing their leaching and migrating into soil and groundwater. However, the underlying mechanism regarding the mineral-root interaction involving primary metal sulfides such as galena (PbS) during the remediation processes has yet been well studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!