The re-suspension of road dust due to intense Low Impact Development (LID) construction activities may be a major contributor to atmospheric metal pollution. However, the distribution characteristics, mobility potential, and pollutant load of atmospheric particles at LID construction sites are not clear. Consequently, management practices to mitigate air pollution from LID construction are lacking. We investigated the atmospheric metal pollution from road dust produced during different construction stages of rain gardens and porous pavements and estimated the ecological risks posed by the heavy metals. Although concentrations of heavy metals in road dust at LID construction sites were lower than at sites without LID construction, the ecological risks posed by the atmospheric heavy metals at LID construction sites were generally higher due to the greater mass of road dust produced during LID construction. Hence, LID management practices should focus on the removal of road dust, especially finer particles (<44 μm) produced during early construction stages. In roads, the zones influenced by LID construction is related to road types based on traffic volume; these road types in descending order of zone influenced by LID construction are: arterial road (400-600 m) > collector road (100-150 m) > access road (50-100 m) > laneway (30-50 m). Based on the study sites, we estimate LID construction in China will contribute 2.31 and 6.23 times as much as the current load of atmospheric particles by 2020 and 2030; and we project atmospheric heavy metals will be 1.45-2.18 and 2.82-4.73 times greater than the current load by 2020 and 2030 from the intense LID construction. Based on our results, several regulatory recommendations are presented to mitigate air pollution at LID construction sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.134243 | DOI Listing |
Sci Rep
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
The main advantages of microneedles are precise drug delivery through human skin, minimal tissue damage and painlessness. We conducted structural analysis and skin puncture studies of hollow microneedles using ANSYS for three materials: Hafnium Dioxide (HfO), Polyglycolic acid (PGA) and Polylactic acid (PLA). Firstly, we selected three lengths, three tip diameters and three base diameters to conduct a L(3) orthogonal experiment.
View Article and Find Full Text PDFWater Res X
January 2025
Department of Systemic Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15 04318 Leipzig, Germany.
Due to accelerating climate change and the need for new development to accommodate population growth, adaptation of urban drainage systems has become a pressing issue in cities. Questions arise whether decentralised urban drainage systems are a better alternative to centralised systems, and whether Nature Based Solutions' (NBS) multifunctionality also brings economic benefits. This research aims to develop spatio-economic scenarios to support cities in increasing their resilience to urban flooding with NBS.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, No. 348 Xianjia Road, Changsha 410205, China.
Lipase, a type of enzyme that decomposes and synthesizes triglycerides, plays an important role in lipid processing. In this study, a heat-resisting lipase gene (4) from was subcloned into the pPICZαA vector and then transformed into X33. The recombinant yeast cell concentration reached the maximum (119.
View Article and Find Full Text PDFSci Rep
October 2024
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!