A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design, synthesis, and biological evaluation of novel dual FFA1 (GPR40)/PPARδ agonists as potential anti-diabetic agents. | LitMetric

Design, synthesis, and biological evaluation of novel dual FFA1 (GPR40)/PPARδ agonists as potential anti-diabetic agents.

Bioorg Chem

School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China. Electronic address:

Published: November 2019

The free fatty acid receptor 1 (FFA1) and peroxisome proliferator-activated receptor δ (PPARδ) were considered as potential anti-diabetic targets, and the dual FFA1/PPARδ agonists might provide synergistic effect in insulin secretion and sensibility. Herein, we further develop dual agonists by screening 7 series of heterocycles, resulting in the discovery of compound 19 with considerable oral pharmacokinetic profile. Compound 19 exhibited a balanced potency between FFA1 and PPARδ, and high selectivity over PPARα and PPARγ. Moreover, compound 19 exerted improved glucose-lowering effects and insulin sensitivity in a dose-dependent manner, which might be attributed to its dual effects to simultaneously regulate insulin secretion and resistance. Our results extended the existing chemical space, and provided a potent tool compound 19.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2019.103254DOI Listing

Publication Analysis

Top Keywords

potential anti-diabetic
8
insulin secretion
8
design synthesis
4
synthesis biological
4
biological evaluation
4
evaluation novel
4
dual
4
novel dual
4
dual ffa1
4
ffa1 gpr40/pparδ
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!