Simultaneous quantification of dopamine, serotonin, their metabolites and amino acids by LC-MS/MS in mouse brain following repetitive transcranial magnetic stimulation.

Neurochem Int

School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia; School of Human Sciences, University of Western Australia, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Australia. Electronic address:

Published: December 2019

Repetitive Transcranial Magnetic Stimulation (rTMS) is a form of non-invasive brain stimulation that has shown therapeutic potential for various nervous system disorders. In addition to its modulatory effects on neuronal excitability, rTMS is capable of altering neurotransmitter (e.g., glutamate, GABA, dopamine and serotonin) concentrations in cortical and subcortical brain regions. Here we used a modified liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) to quantify changes in 27 free amino acids and the monoamines: dopamine (DA), serotonin (5HT) and their metabolites (DOPAC, HVA; 5HIAA) in the mouse brain. Awake C57BL/6 J mice (either sex, 8-12 weeks old) received 10 Hz rTMS using two devices that can deliver low (LI-; 12 mT; custom built) or high (Fo8-; 1.2 T; MagVenture) intensity rTMS. Sham (unstimulated) mice were used as controls. Samples were collected immediately following a single session of rTMS or sham and processed for LC-MS/MS. The modified LC-MS/MS method used to detect DA, 5-HT and their metabolites showed good accuracy and precision with regression coefficients greater than 0.999, and an intra- and inter-day reproducibility with values < 13%. Fo8-rTMS induced a significant reduction in cortical 5-HT turnover rates, hippocampal DOPAC and an increase in striatal DOPAC concentrations. Fo8-rTMS also reduced concentrations of hippocampal α-aminoadipic acid, and striatal serine, threonine, sarcosine, aspartate and glutamate. There were no changes in the level of any compounds following LI-rTMS as compared to sham. The rapid change in monoamine turnover and amino acid concentrations following Fo8-rTMS but not LI-rTMS suggests that different stimulation parameters recruit different cellular mechanisms related to rTMS-induced plasticity. The described method can be used for the characterisation of trace levels of neurotransmitters and amino acids in brain tissue homogenates, providing a useful and precise tool to investigate localised neurotransmitter changes in animal models of health and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2019.104546DOI Listing

Publication Analysis

Top Keywords

dopamine serotonin
12
amino acids
8
mouse brain
8
repetitive transcranial
8
transcranial magnetic
8
magnetic stimulation
8
rtms sham
8
rtms
5
simultaneous quantification
4
quantification dopamine
4

Similar Publications

Background: Antidepressants are commonly prescribed for mood disorders. Epidemiological studies suggest antidepressant use may be associated with cataracts and glaucoma. We aim to investigate the association between antidepressants and cataracts and glaucoma.

View Article and Find Full Text PDF

Background: Psychosis, marked by detachment from reality, includes symptoms like hallucinations and delusions. Traditional herbal remedies like kratom are gaining attention for psychiatric conditions. This was aimed at comprehending the molecular mechanisms of Kratom's antipsychotic effects utilizing a multi-modal computational approach.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system.

View Article and Find Full Text PDF

For a proper representation of the causal structure of the world, it is adaptive to consider both evidence for and evidence against causality. To take punishment as an example, the causality of a stimulus is unlikely if there is a temporal gap before punishment is received, but causality is credible if the stimulus immediately precedes punishment. In contrast, causality can be ruled out if the punishment occurred first.

View Article and Find Full Text PDF

The monoamine oxidase (MAO) gene family encodes for enzymes that perform the oxidative deamination of monoamines, a process required to degrade norepinephrine, serotonin, dopamine, and other amines. While mammalian MAO enzymes, MAO A and MAO B, have been extensively studied, the molecular properties of the other family members are only partly uncovered. This study aims to explore the evolution of monoamine oxidases, emphasizing understanding the MAO gene repertoire among vertebrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!