Stochastic mechanistic epidemiological models largely contribute to better understand pathogen emergence and spread, and assess control strategies at various scales (from within-host to transnational scale). However, developing realistic models which involve multi-disciplinary knowledge integration faces three major challenges in predictive epidemiology: lack of readability once translated into simulation code, low reproducibility and reusability, and long development time compared to outbreak time scale. We introduce here EMULSION, an artificial intelligence-based software intended to address those issues and help modellers focus on model design rather than programming. EMULSION defines a domain-specific language to make all components of an epidemiological model (structure, processes, parameters…) explicit as a structured text file. This file is readable by scientists from other fields (epidemiologists, biologists, economists), who can contribute to validate or revise assumptions at any stage of model development. It is then automatically processed by EMULSION generic simulation engine, preventing any discrepancy between model description and implementation. The modelling language and simulation architecture both rely on the combination of advanced artificial intelligence methods (knowledge representation and multi-level agent-based simulation), allowing several modelling paradigms (from compartment- to individual-based models) at several scales (up to metapopulation). The flexibility of EMULSION and its capability to support iterative modelling are illustrated here through examples of progressive complexity, including late revisions of core model assumptions. EMULSION is also currently used to model the spread of several diseases in real pathosystems. EMULSION provides a command-line tool for checking models, producing model diagrams, running simulations, and plotting outputs. Written in Python 3, EMULSION runs on Linux, MacOS, and Windows. It is released under Apache-2.0 license. A comprehensive documentation with installation instructions, a tutorial and many examples are available from: https://sourcesup.renater.fr/www/emulsion-public.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6760811PMC
http://dx.doi.org/10.1371/journal.pcbi.1007342DOI Listing

Publication Analysis

Top Keywords

emulsion
8
model
7
models
5
emulsion transparent
4
transparent flexible
4
flexible multiscale
4
multiscale stochastic
4
stochastic models
4
models human
4
human animal
4

Similar Publications

Emulsion Polymerization of Styrene to Polystyrene Nanoparticles with Self-Emulsifying Nanodroplets as Nucleus.

Langmuir

January 2025

Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

The mechanism of the emulsion polymerization of styrene to polystyrene nanoparticles (PSNPs) remains a subject of debate. Herein, a series of reaction parameters with different surfactant concentrations, monomer contents, temperatures, and equilibration times were investigated to understand the formation mechanism of PSNPs, which demonstrate a correlation between the properties of PSNPs and the mesostructure of the premix. Cooling the model systems with self-emulsifying nanodroplets (SENDs) in the early reaction stages resulted in the hollow polystyrene spheres (H-PSSs), ruptured PSNPs, and dandelion-like PSNPs, further indicating that the oil nanodroplets are the key sites for the formation of PSNPs.

View Article and Find Full Text PDF

Thermally Triggered Double Emulsion-Integrated Hydrogel Microparticles for Multiplexed Molecular Diagnostics.

Adv Sci (Weinh)

January 2025

Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.

During the COVID-19 pandemic, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been recognized as the most reliable diagnostic tool. However, there is a need to develop multiplexed assays capable of analyzing multiple genes simultaneously to expand its application. To address this, a multiplexed RT-qPCR using a double emulsion (DE)-based carrier and a polymer microparticle reactor, termed primer-incorporated network tailored with Taqman probe (TaqPIN) is developed.

View Article and Find Full Text PDF

Sprayed Aqueous Microdroplets for Spontaneous Synthesis of Functional Microgels.

Angew Chem Int Ed Engl

January 2025

DWI at RWTH Aachen, Macromolecular Chemistry, Pauwelsstrasse 8, 52056, Aachen, GERMANY.

The development of sustainable synthesis route to produce functional and bioactive polymer colloids has attracted much attention. Most strategies are based on the polymerization of monomers or crosslinking of prepolymers by enzyme- or cell-mediated reactions or specific catalysts in confined emulsions. Herein, a facile solution spray method was developed for spontaneous synthesis of microgels without use of confined emulsion, additional initiators/catalysts and deoxygenation, which addresses the challenges in traditional microgel synthesis.

View Article and Find Full Text PDF

Background: Octenylsuccinic anhydride (OSA) is one of the efficient compounds used in food industries as an emulsifier. The current study describes the augmentation of tocotrienol (T3) bioavailability by combining it with OSA and then converting it into a nanoemulsion. The creation of the nanoemulsions ASG-T3U, ASG-T3U and ASG-T3U involved ultrasonication power at 300 W for 10, 20 and 30 cycles, respectively.

View Article and Find Full Text PDF

The adsorption of charged clay nanoplatelets plays an important role in stabilizing emulsions by forming a barrier around the emulsion droplets and preventing coalescence. In this work, the adsorption of charged clay nanoplatelets on a preformed Latex microsphere in an aqueous medium is investigated at high temporal resolution using optical tweezer-based single-colloid electrophoresis. Above a critical clay concentration, charged clay nanoplatelets in an aqueous medium self-assemble gradually to form gel-like networks that become denser with increasing medium salinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!