Background: Patients with impaired immunity often have rapid progression of tuberculosis (TB) which can lead to highly lethal (MTB) sepsis. Opsonic monoclonal antibodies (MABs) directed against MTB that enhance phagocytic killing activity and clearance of MTB from blood may be useful to enhance TB immunity.
Methods: BALB/c mice were immunized with ethanol-killed MTB (EK-MTB) and MABs were produced and screened by ELISA for binding to killed and live (SMEG) and MTB. MAB opsonophagocytic killing activity (OPKA) was examined using SMEG with HL60 and U-937 cells and MTB with U-937 cells. Clearance of MTB from blood was evaluated in Institute of Cancer Research (ICR) mice given opsonic anti-MTB MABs or saline (control) 24 h prior to intravenous infusion with 10 CFUs gamma-irradiated MTB (HN878). MTB levels in murine blood collected 0.25, 4 and 24 h post-challenge were assessed by qPCR. MAB binding to peptidoglycan (PGN) was examined by ELISA using PGN cell wall mixture and ultra-pure PGN.
Results: Two MABs (GG9 and JG7) bound to killed and live SMEG and MTB (susceptible and resistant), and promoted OPKA with live MTB. MAB JG7 significantly enhanced OPKA of MTB. Both MABs significantly enhanced clearance of killed MTB from murine blood at 4 and 24 h as measured by qPCR. These opsonic MABs bound to PGN, a major cell wall constituent.
Conclusions: Anti-MTB MABs that promote bactericidal phagocytic activity of MTB and enhance clearance of killed MTB from the blood, may offer an immunotherapeutic approach for treatment of MTB bacteremia or sepsis, and augment treatment of multi-drug resistant (MDR) or extensively drug resistant (XDR) TB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6734336 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2019.e02260 | DOI Listing |
J Immunother Precis Oncol
February 2025
Medical Affairs Division, Roche Products India Pvt Ltd, New Delhi, India.
Biologic factors limiting responsiveness to matched targeted therapies include genomic heterogeneity and complexity. Advanced tumors with unique molecular profiles can be studied by comprehensive genomic profiling (CGP) and enhance patient outcomes using principles of precision medicine. The clinical utility of CGP across all cancer types and different therapeutic interventions using overall survival (OS) and progression-free survival (PFS) data was studied in this systematic literature review.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada.
Background: Targeted next-generation sequencing (tNGS) is promising alternative to phenotypic drug susceptibility testing (pDST) for detecting drug-resistant tuberculosis (DRTB). This study explored the potential cost-effectiveness of tNGS for the diagnosis of DR-TB across 3 settings: India, South Africa and Georgia.
Methods: To inform WHO guideline development group (GDG) on tNGS we developed a stochastic decision analysis model and assessed cost-effectiveness of tNGS for DST among rifampicin resistance individuals.
PLoS Med
January 2025
Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America.
Background: Globally, over one-third of pulmonary tuberculosis (TB) disease diagnoses are made based on clinical criteria after a negative bacteriological test result. There is limited information on the factors that determine clinicians' decisions to initiate TB treatment when initial bacteriological test results are negative.
Methods And Findings: We performed a systematic review and individual patient data meta-analysis using studies conducted between January 2010 and December 2022 (PROSPERO: CRD42022287613).
( ) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi-(MDR) and extensively-(XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for long-term survival Here, we report the development of antitubercular small molecules that inhibit the cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule that can bind to the heme cofactor of both enzymes.
View Article and Find Full Text PDFTuberculosis (TB) is historically the world's deadliest infectious disease. New TB drugs that can avoid pre-existing resistance are desperately needed. The β-lactams are the oldest and most widely used class of antibiotics to treat bacterial infections but, for a variety of reasons, they were largely ignored until recently as a potential treatment option for TB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!