A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancement effect on antibacterial property of gray titania coating by plasma-sprayed hydroxyapatite-amino acid complexes during irradiation with visible light. | LitMetric

The aim of this study was to reveal the mechanism of enhancement of antibacterial properties of gray titania by plasma-sprayed hydroxyapatite (HAp)-amino acid fluorescent complexes under irradiation with visible light. Although visible-light-sensitive photocatalysts are applied safely to oral cavities, their efficacy is not high because of the low energy of irradiating light. This study proposed a composite coating containing HAp and gray titania. HAp itself functioned as bacteria catchers and gray titania released antibacterial radicals by visible-light irradiation. HAp-amino acid fluorescent complexes were formed on the surface of the composite coating in order to increase light intensity to gray titania by fluorescence, based on an idea bioinspired by deep-sea fluorescent coral reefs. A cytotoxicity assay on murine osteoblastlike cells revealed that biocompatibility of the HAp-amino acid fluorescent complexes was identical with the that of HAp. Antibacterial assays involving showed that the three types of HAp-amino acid fluorescent complexes and irradiation with three types of light-emitting diodes (blue, green, and red) significantly decreased colony-forming units. Furthermore, kelvin probe force microscopy revealed that the HAp-amino acid fluorescent complexes preserved the surface potentials even after irradiation with visible light, whereas those of HAp were significantly decreased by the irradiation. Such a preservative effect of the HAp-amino acid fluorescent complexes maintained the bacterial-adhesion performance of HAp and consequently enhanced the antibacterial action of gray titania.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728275PMC
http://dx.doi.org/10.1016/j.heliyon.2019.e02207DOI Listing

Publication Analysis

Top Keywords

gray titania
24
hap-amino acid
24
acid fluorescent
24
fluorescent complexes
24
complexes irradiation
12
irradiation visible
12
visible light
12
enhancement antibacterial
8
composite coating
8
three types
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!