Dataset for the assessment of metallic pollution in the Saint-Charles River sediments (Québec City, QC, Canada).

Data Brief

Département de Géographie, Université Laval, Pavillon Abitibi-Price, 2405 Rue de la Terrasse, Québec, QC, G1V 0A6, Canada.

Published: October 2019

This Data in Brief article presents sedimentological and geochemical parameters from a set of sedimentary samples collected in the Saint-Charles River, a tributary of the Saint-Lawrence River flowing in Québec City (QC, Canada). It details the experimental design, methods, materials and results of destructive analyses related to a multi-proxy study of polymetallic contamination in sediments collected within an urban reservoir (Spatial and temporal patterns of metallic pollution in Québec City, Canada: Sources and hazard assessment from reservoir sediment records, https://doi.org/10.1016/j.scitotenv.2019.04.021, (Chassiot et al., 2019)). The present article summarizes the results of relevant parameters on a set of 68 samples: total organic carbon (TOC), sulfur content, grain-size, and concentrations of heavy and trace metals. It also presents the calculation of enrichment factors, geoaccumulation indexes, and metallic pollution index.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731351PMC
http://dx.doi.org/10.1016/j.dib.2019.104256DOI Listing

Publication Analysis

Top Keywords

metallic pollution
12
québec city
12
city canada
12
saint-charles river
8
parameters set
8
dataset assessment
4
assessment metallic
4
pollution saint-charles
4
river sediments
4
sediments québec
4

Similar Publications

Dye-laden wastewater poses a significant environmental and health threat. This study investigated the potential of green-synthesized zinc oxide nanoparticles (ZnO NPs), derived from Padina pavonica brown algae extract, for the removal of methylene blue (MB) dye. The hypothesis was that utilizing algal extract for ZnO NP synthesis would enhance adsorption capacity and photocatalytic activity for dye removal.

View Article and Find Full Text PDF

Selective detection of mitochondrial Cu in living cells by a near-infrared iridium(III) complex.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China. Electronic address:

The widespread use of copper (Cu) has raised concerns about environmental pollution and adverse effects on human health, highlighting the need to develop copper detection methods. Developing near-infrared (NIR) luminescent probes for imaging subcellular Cu is still a challenge. In this work, we have developed a luminescence probe based on a NIR iridium(III) complex, which rapidly detects Cu by combining salicylaldehyde and amine groups through a simple Schiff base reaction on the N^N ligand.

View Article and Find Full Text PDF

Human activities have far-reaching impact on natural ecosystems, causing increasing disturbances and disruptions to the delicate balance of the environment. Poor land use planning, urbanization, infrastructure development, and unplanned tourism exacerbate contamination and degradation in tourist destinations, yet the pollution of potentially toxic elements (PTEs) in these environments remains inadequately explored. To address this issue, we investigated the concentrations of acid-digested PTEs in road dust in Abbottabad city (Pakistan) with heavy traffic.

View Article and Find Full Text PDF

Resource utilization of waste solar photovoltaic panels for preparation of microporous silicon nanoparticles.

Waste Manag

December 2024

College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.

With the exponential growth of global photovoltaic (PV) installed capacity, the quantity of discarded PV modules continues to rise. This study innovatively explored the sustainable recovery and utilization of raw materials from discarded solar panels, focusing on the transformation of recycled silicon into microporous silica nanoparticles (MSN). Low toxic organic solvent ethyl acetate (EA) was for the first time utilized to reduce the viscosity of ethylene-vinyl acetate (EVA) and facilitated its removal.

View Article and Find Full Text PDF

Dissolved metal concentrations in coastal seawater and groundwater in Saipan, Commonwealth of the Northern Mariana Islands, USA.

Mar Pollut Bull

December 2024

Department of Environmental Science, American University, 4400 Massachusetts Ave., NW, Washington, DC 20016, United States of America; Department of Environmental Science and Studies, Washington College, Chestertown, MD 21620, United States of America.

Saipan, the largest and most populated island of the Commonwealth of the Northern Mariana Islands, has coastal areas with high submarine groundwater discharge (SGD) and heavy metal pollution of sediments. Here, we measured metal concentrations in coastal Saipan groundwater and surface water and explored spatial correlations with pollution sources. Concentrations of Cd, Pb, Cu, and Zn were highest in inland wells, with 3 wells exceeding USEPA guidelines for Cu or Pb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!