Background: To compare the frictional resistance between passive self-ligating brackets and conventional brackets with low-friction ligature under bracket/archwire and root/bone interface during dental alignment and leveling.

Material And Methods: A tridimensional model of the maxilla and teeth of a patient treated with conventional brackets, and slide ligatures was generated employing the SolidWorks modeling software. SmartClip self-ligating brackets and Logic Line conventional brackets were assembled with slide low-friction ligatures, utilizing archwires with different diameters and alloys used for the alignment and leveling stage. Friction caused during the bracket/archwire interface and stress during the bone/root interface were compared through a finite element model.

Results: SmartClip and Logic Line brackets with slide elastomeric low-friction elastomeric ligature showed similar frictional stress values of 0.50 MPa and 0.64 MPa, respectively. Passive self-ligating brackets transmitted a lower load along the periodontal ligament, compared to conventional brackets with a low-friction ligature.

Conclusions: Slide low-friction elastomeric ligatures showed frictional forces during the bracket/archwire interface similar to those of the SmartClip brackets, while the distribution of stresses and deformations during the root/bone interface were lower in the passive self-ligating brackets. Orthodontic friction, finite element analysis, orthodontic brackets, orthodontic wires.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731002PMC
http://dx.doi.org/10.4317/jced.55913DOI Listing

Publication Analysis

Top Keywords

self-ligating brackets
20
passive self-ligating
16
conventional brackets
16
brackets
13
frictional resistance
8
resistance passive
8
low-friction ligature
8
alignment leveling
8
leveling stage
8
brackets low-friction
8

Similar Publications

Objective: To study the influence of bracket base meshes on shear bond strength and observe them using a scanning electron microscopy (SEM) before and after debonding.

Methods: Ninety brackets were divided into nine groups of 10 samples each: G1-Alexander, G2-Mini Sprint Brackets, G3-In-Ovation R CCO, G4-Gemini SL Self-Ligating Bracket, G5-Classic mini 2G Stylus, G6-Gemini Metal Brackets, G7-Clarity Advanced, G8-Crystall-Ize, and G9-Ceramic Series Flexx 2G. Groups G1 to G6 and G7 to G9 consisted of metallic and aesthetic brackets, respectively.

View Article and Find Full Text PDF

Background: Proper torque control is crucial to the outcome of orthodontic treatment. This study aimed to employ finite element analysis to compare the torque capabilities of a novel spherical self-ligating bracket with a lock-hook system against those of commonly used passive self-ligating and conventional bracket systems, as well as to reveal the biomechanical changes in the periodontal ligament (PDL) during torque expression.

Methods: A maxillary right central incisor, along with its PDL and alveolar bone, were modeled.

View Article and Find Full Text PDF

Background: We aimed to evaluate changes in buccal bone thickness (BBT), buccolingual dental inclinations (BLI), and transversal widths (TW) after treatment using a passive self-ligating system.

Material And Methods: Pre- and posttreatment cone-beam computed tomography images (CBCT) of 21 Class I patients (initial mean age: 14.99 ± 1.

View Article and Find Full Text PDF

Microbial adhesion on different types of orthodontic brackets and wires: An in vitro study.

Saudi Dent J

November 2024

Department of Clinical Sciences, Center of Medical and Bio-Allied Health Sciences Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates.

Objective: The objective of this study was to compare the microbial adhesion of different oral pathogens on different wires used in orthodontic treatment and to evaluate the potential of these pathogens to form biofilms on different types of orthodontic wires and brackets.

Methods: In this in vitro investigation, we calculated that the sample size for each group (i.e.

View Article and Find Full Text PDF

Introduction: This study aimed to perform a comparative analysis of stresses and displacements with incremental torque on the maxillary incisors and surrounding cortical bone using conventional metal brackets with rectangular slots and passive self-ligating brackets with square slots using finite element analysis (FEA).

Materials And Methods: An in vitro FEA study was conducted, in which a three-dimensional (3D) model of the maxilla was built using ANSYS software version 18 (ANSYS Inc., Canonsburg, PA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!