mosquitoes are the principal dengue vector in Taiwan, where the use of insecticides is a key element in the national control strategy. However, control efforts are constrained by the development of resistance to most insecticides, including pyrethroids. In this study, mutations in the voltage-gated sodium channel (VGSC) gene resulting in knockdown resistance () were examined in . Fragments of the VGSC gene were polymerase chain reaction (PCR)-amplified followed by restriction fragment length polymorphism analysis in samples from various settings in Southern Taiwan covering dry and wet seasons from 2013 to 2015. Three mutations were identified: V1023G, D1794Y, and F1534C, with observed frequencies of 0.36, 0.55, and 0.33, respectively, in the dry season of 2013-2014. Exploring for temporal changes, the most important observation was the 1534C allele frequency increment in the following season to 0.60 ( < 0.05). This study suggests that continued insecticide pressure is driving the mutational changes, although the selection is ambiguous in the mosquito population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838577PMC
http://dx.doi.org/10.4269/ajtmh.19-0289DOI Listing

Publication Analysis

Top Keywords

knockdown resistance
8
southern taiwan
8
vgsc gene
8
temporal pattern
4
pattern mutations
4
mutations knockdown
4
resistance gene
4
gene mosquitoes
4
mosquitoes sampled
4
sampled southern
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!