The antibacterial and antibiofilm activities of two new ruthenium complexes against E. coli, S. aureus, P. aeruginosa PAO1 (laboratory strain) and P. aeruginosa LES B58 (clinical strain) were evaluated. Complexes, mer-[Ru (2-bimc) ] ⋅ H O (1) and cis-[Ru Cl (2,3-pydcH) ] ⋅ 4H O (2), were obtained using aromatic carboxylic acid ligands, namely, 1H-benzimidazole-2-carboxylic acid (2-bimcH) and pyridine-2,3-dicarboxylic acid (2,3-pydcH ). Compounds were physicochemically characterized using X-ray diffraction, Hirshfeld surface analysis, IR and UV/VIS spectroscopies, as well as magnetic and electrochemical measurements. Structural characterization revealed that Ru(III) and Ru(IV) ions in the complexes adopt a distorted octahedral geometry. The intermolecular classical and weak hydrogen bonds, and π⋅⋅⋅π contacts significantly contribute to structure stabilization, leading to the formation of a supramolecular assembly. Biological studies have shown that the Ru complexes inhibit the growth of bacteria and biofilm formation by the tested strains and the complexes seem to be a potential as antimicrobial agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.201900403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!