Antibiotic resistance is a major public health problem globally. Particularly concerning amongst drug-resistant human pathogens is Mycobacterium tuberculosis that causes the deadly infectious tuberculosis (TB) disease. Significant issues associated with current treatment options for drug-resistant TB and the high rate of mortality from the disease makes the development of novel treatment options against this pathogen an urgent need. Antimicrobial peptides are part of innate immunity in all forms of life and could provide a potential solution against drug-resistant TB. This review is a critical analysis of antimicrobial peptides that are reported to be active against the M tuberculosis complex exclusively. However, activity on non-TB strains such as Mycobacterium avium and Mycobacterium intracellulare, whenever available, have been included at appropriate sections for these anti-TB peptides. Natural and synthetic antimicrobial peptides of diverse sequences, along with their chemical structures, are presented, discussed, and correlated to their observed antimycobacterial activities. Critical analyses of the structure allied to the anti-mycobacterial activity have allowed us to draw important conclusions and ideas for research and development on these promising molecules to realise their full potential. Even though the review is focussed on peptides, we have briefly summarised the structures and potency of the various small molecule drugs that are available and under development, for TB treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/psc.3213 | DOI Listing |
Exp Appl Acarol
January 2025
Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
Tick salivary proteins are crucial for efficient and successful tick feeding. Most of them are still uncharacterized, especially those involved in the formation of tick cement. Tick salivary protein PA107 is a putative cement protein, which is transcribed in salivary glands during the initial phase of tick feeding.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Dermatology and Venereology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
Vitiligo is a pigmentary disorder acquired and caused by the loss or destruction of melanocytes from the epidermis. There is strong proof that vitiligo is mainly an autoimmune disease. Cathelicidin (LL37), an antimicrobial polypeptide, is an important part of the innate immune system and has a role in different skin autoimmune diseases.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa.
C-terminal amidation of antimicrobial peptides (AMPs) is a frequent minor modification used to improve antibacterial potency, commonly ascribed to increased positive charge, protection from proteases, and a stabilized secondary structure. Although the activity of AMPs is primarily associated with the ability to penetrate bacterial membranes, hitherto the effect of amidation on this interaction has not been understood in detail. Here, we show that amidation of the scorpion-derived membranolytic peptide AamAP1-Lys produces a potent analog with faster bactericidal activity, increased membrane permeabilization, and greater Gram-negative membrane penetration associated with greater conformational flexibility.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Infectious Diseases Division, CSIR─Indian Institute of Integrative Medicine, Jammu 180001, India.
Tuberculosis (TB), a leading infectious disease caused by the pathogen , poses a significant treatment challenge due to its unique characteristics and resistance to existing drugs. The conventional treatment regimens, which are lengthy and involve multiple drugs, often result in poor patient adherence and subsequent drug resistance, particularly with multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. This highlights the urgent need for novel anti-TB therapies and new drug targets.
View Article and Find Full Text PDFPrep Biochem Biotechnol
January 2025
Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania.
has developed resistance to most conventional antibiotics and is a causative agent of serious infections. Alternative therapies are urgently needed. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, including () and (), and represent a potential solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!