Genetic voltage indicators.

BMC Biol

Neurotechnology Center, Department Biological Sciences, Columbia University, 550 W 120th Street, New York, NY, 10027, USA.

Published: September 2019

AI Article Synopsis

  • Optical imaging of membrane potential is considered crucial for neuroscience as it could allow detailed observation of electrical activities in brain cells, especially with the use of organic voltage-sensitive dyes.
  • The introduction of genetically encoded voltage indicators (GEVIs) has improved the targeting of voltage measurements to specific neurons, although challenges remain for achieving high-resolution results in live mammalian systems.
  • Overcoming current limitations in two-photon imaging of GEVIs will need collaboration across different scientific fields and continuous backing from major research funding initiatives.

Article Abstract

As a "holy grail" of neuroscience, optical imaging of membrane potential could enable high resolution measurements of spiking and synaptic activity in neuronal populations. This has been partly achieved using organic voltage-sensitive dyes in vitro, or in invertebrate preparations yet unspecific staining has prevented single-cell resolution measurements from mammalian preparations in vivo. The development of genetically encoded voltage indicators (GEVIs) and chemogenetic sensors has enabled targeting voltage indicators to plasma membranes and selective neuronal populations. Here, we review recent advances in the design and use of genetic voltage indicators and discuss advantages and disadvantages of three classes of them. Although genetic voltage indicators could revolutionize neuroscience, there are still significant challenges, particularly two-photon performance. To overcome them may require cross-disciplinary collaborations, team effort, and sustained support by large-scale research initiatives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739974PMC
http://dx.doi.org/10.1186/s12915-019-0682-0DOI Listing

Publication Analysis

Top Keywords

voltage indicators
20
genetic voltage
12
resolution measurements
8
neuronal populations
8
indicators
5
indicators "holy
4
"holy grail"
4
grail" neuroscience
4
neuroscience optical
4
optical imaging
4

Similar Publications

Engineers, geomorphologists, and ecologists acknowledge the need for temporally and spatially resolved measurements of sediment clogging (also known as colmation) in permeable gravel-bed rivers due to its adverse impacts on water and habitat quality. In this paper, we present a novel method for non-destructive, real-time measurements of pore-scale sediment deposition and monitoring of clogging by using wire-mesh sensors (WMSs) embedded in spheres, forming a smart gravel bed (GravelSens). The measuring principle is based on one-by-one voltage excitation of transmitter electrodes, followed by simultaneous measurements of the resulting current by receiver electrodes at each crossing measuring pores.

View Article and Find Full Text PDF

For those piezoelectric materials that operate under high-power conditions, the piezoelectric and dielectric properties obtained under small signal conditions cannot be directly applied to high-power transducers. There are three mainstream high-power characterization methods: the constant voltage method, the constant current method, and the transient method. In this study, we developed and verified a combined impedance method that integrated the advantages of the constant voltage and current methods, along with an improved transient method, for high-power testing of PZT-5H piezoelectric ceramics.

View Article and Find Full Text PDF

All-Fiber Micro-Ring Resonator Based p-Si/n-ITO Heterojunction Electro-Optic Modulator.

Materials (Basel)

January 2025

State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy & Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

With the rapid advancement of information technology, the data demands in transmission rates, processing speed, and storage capacity have been increasing significantly. However, silicon electro-optic modulators, characterized by their weak electro-optic effect, struggle to balance modulation efficiency and bandwidth. To overcome this limitation, we propose an electro-optic modulator based on an all-fiber micro-ring resonator and a p-Si/n-ITO heterojunction, achieving high modulation efficiency and large bandwidth.

View Article and Find Full Text PDF

Dye-Sensitized Solar Cells with Modified TiO Scattering Layer Produced by Hydrothermal Method.

Materials (Basel)

January 2025

Department of Materials Science and Engineering, National Dong Hwa University, Hualien 974301, Taiwan.

This work proposes dye-sensitized solar cells (DSSCs) with various photoanode designs. A hydrothermal method is used to synthesize hydrangea-shaped TiO (H-TiO) aggregates. The X-ray diffraction (XRD) pattern of H-TiO reveals only an anatase phase.

View Article and Find Full Text PDF

A Carbon Nanotube Transistor Based on Buried-Gate Structure.

Materials (Basel)

January 2025

School of Microelectronics and Artificial Intelligence, Kaili University, Kaili 556011, China.

From the discovery of carbon nanotubes to the ability to prepare high-purity semiconductor carbon nanotubes in large quantities, the large-scale fabrication of carbon nanotube transistors (CNT) will become possible. In this paper, a carbon nanotube transistor featuring a buried-gate structure, employing an etching process to optimize the surface flatness of the device and enhance its performance, is presented. This CNT thin-film transistor has a current switching ratio of 10, a threshold voltage of around 1 V, and a mobility that can reach 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!