Background: The black-lip rock oyster (Saccostrea echinata) has considerable potential for aquaculture throughout the tropics. Previous attempts to farm S. echinata failed due to an insufficient supply of wild spat; however, the prospect of hatchery-based aquaculture has stimulated renewed interest, and small-scale farming is underway across northern Australia and in New Caledonia. The absence of knowledge surrounding the population genetic structure of this species has raised concerns about the genetic impacts of this emerging aquaculture industry. This study is the first to examine population genetics of S. echinata and employs both mitochondrial cytochrome c oxidase subunit I gene (COI) and single nucleotide polymorphism (SNP) markers.
Results: The mitochondrial COI data set included 273 sequences of 594 base pair length, which comprised 74 haplotypes. The SNP data set included 27,887 filtered SNPs for 272 oysters and of these 31 SNPs were identified as candidate adaptive loci. Data from the mitochondrial COI analyses, supports a broad tropical Indo-Pacific distribution of S. echinata, and showed high haplotype and nucleotide diversities (0.887-1.000 and 0.005-0.008, respectively). Mitochondrial COI analyses also revealed a 'star-like' haplotype network, and significant and negative neutrality tests (Tajima's D = - 2.030, Fu's Fs = - 25.638, P < 0.001) support a recent population expansion after a bottleneck. The SNP analyses showed significant levels of population subdivision and four genetic clusters were identified: (1) the Noumea (New Caledonia) sample location; (2) the Bowen (north Queensland, Australia) sample location, and remaining sample locations in the Northern Territory, Australia (n = 8) were differentiated into two genetic clusters. These occurred at either side of the Wessel Islands and were termed (3) 'west' and (4) 'east' clusters, and two migrant individuals were detected between them. The SNP data showed a significant positive correlation between genetic and geographic distance (Mantel test, P < 0.001, R = 0.798) and supported isolation by distance. Three candidate adaptive SNPs were identified as occurring within known genes and gene ontology was well described for the sex peptide receptor gene.
Conclusions: Data supports the existence of genetically distinct populations of S. echinata, suggesting that management of wild and farmed stocks should be based upon multiple management units. This research has made information on population genetic structure and connectivity available for a new aquaculture species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6740020 | PMC |
http://dx.doi.org/10.1186/s12864-019-6052-z | DOI Listing |
Insects
January 2025
College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
Chlorpyrifos (CPF) is an organophosphate insecticide that is extensively utilized globally due to its effectiveness against over 200 pest species. CPF exhibits its toxicity primarily through the inhibition of the acetylcholinesterase (AChE) enzyme, while mitochondrial damage and dysfunction have also been observed. The present study quantified the transcript levels of mitochondria protein-coding genes (mtPCGs) using quantitative real-time polymerase chain reaction () in samples of larvae of three dragonfly species (, , and ) under different levels of CPF stress.
View Article and Find Full Text PDFInsects
December 2024
College of Plant Protection, Southwest University, Chongqing 400715, China.
Chevrolat, 1863, one of the most species-rich genera of Clytini, comprises 36 subgenera and 302 species/subspecies, with some species being of significant economic importance. To assess the monophyly and subgeneric system of this genus, we newly obtained mitochondrial genomic data from 21 species of via high-throughput sequencing and reconstructed the phylogeny of this genus using ML and BI methods. The mitochondrial genomes of all sequenced species were found to comprise 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one non-coding region (control region, CR), reflecting a highly conserved gene arrangement.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Biomedical Science Research Unit, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand.
Urinary schistosomiasis is caused by the blood fluke , which is predominantly found in Africa. The freshwater snail is its main intermediate host. The species that make up the group are genetically complex, and their taxonomic status remains controversial.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, Pin- 700019, West Bengal, India.
Background: The Tephritidae family, commonly referred to as true fruit flies, comprises of a substantial group within order Diptera. Numerous species within this family are major agricultural pests, with a tendency to infest a wide array of fruits and vegetables in tropical and sub- tropical regions, leading to considerable damage and consequent reductions in the market value of the crops.
Methods And Results: The current study was aimed to propose a promising solution to the menace posed by fruit flies by offering rapid, accurate and reliable species identification by using character-based DNA barcode methodology.
Vet Parasitol Reg Stud Reports
January 2025
Southeastern Cooperative Wildlife Disease Study (SCWDS), Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA; Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA. Electronic address:
This report describes a case of generalized knemidokoptic mange caused by Micnemidocoptes sp. in a bald eagle (Haliaeetus leucocephalus). In June 2024, an adult male eagle from Polk County, Arkansas, presented with severe skin disease and in a moribund state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!