Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the development of deep learning in medical image analysis, decoding brain states from functional magnetic resonance imaging (fMRI) signals has made significant progress. Previous studies often utilized deep neural networks to automatically classify brain activity patterns related to diverse cognitive states. However, due to the individual differences between subjects and the variation in acquisition parameters across devices, the inconsistency in data distributions degrades the performance of cross-subject decoding. Besides, most current networks were trained in a supervised way, which is not suitable for the actual scenarios in which massive amounts of data are unlabeled. To address these problems, we proposed the deep cross-subject adaptation decoding (DCAD) framework to decipher the brain states. The proposed volume-based 3D feature extraction architecture can automatically learn the common spatiotemporal features of labeled source data to generate a distinct descriptor. Then, the distance between the source and target distributions is minimized via an unsupervised domain adaptation (UDA) method, which can help to accurately decode the cognitive states across subjects. The performance of the DCAD was evaluated on task-fMRI (tfMRI) dataset from the Human Connectome Project (HCP). Experimental results showed that the proposed method achieved the state-of-the-art decoding performance with mean 81.9% and 84.9% accuracies under two conditions (4 brain states and 9 brain states respectively) of working memory task. Our findings also demonstrated that UDA can mitigate the impact of the data distribution shift, thereby providing a superior choice for increasing the performance of cross-subject decoding without depending on annotations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2019.2940695 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!