Biological studies often involve the investigation of immobilized (or trapped) particles and cells. Various trapping methods without touching, such as optical, magnetic, and acoustic tweezers, have been developed to trap small particles. Here, we present the manipulation of a single cell or multiple cells using ultrasound-array-based single-beam acoustic tweezers (UA-SBATs). In SBATs, only a one-sided tightly focused acoustic beam produces a high acoustic gradient force-a mechanism that mirrors that of optical tweezers. As a result, targeted cells can be attracted to the beam center and immobilized within its trapping zone. Since an array transducer allows acoustic beam steering and scanning electronically instead of mechanical translation, it can manipulate cells more simply and quickly compared with single-element transducers, especially in biocompatible setup. In this experiment, a customized 30-MHz array transducer with an interdigitally bonded (IB) 2-2 piezocomposite was employed to immobilize MCF-12F cells. Cells were attracted to the center of the beam and laterally displaced with the array transducer without any damages to the cells. These findings suggest that UA-SBAT can be a promising tool for cell manipulation and may pave the way for exploring new biological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2019.2940239 | DOI Listing |
Sensors (Basel)
January 2025
College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China.
Underwater acoustic transducers need to expand the coverage of acoustic signals as much as possible in most ocean explorations, and the directivity indicators of transducers are difficult to change after the device is packaged, which makes the emergence angle of the underwater acoustic transducer limited in special operating environments, such as polar regions, submarine volcanoes, and cold springs. Taking advantage of the refractive characteristics of sound waves propagating in different media, the directivity indicators can be controlled by installing an acoustic lens outside the underwater acoustic transducer. To increase the detection range of an underwater acoustic transducer in a specific marine environment, a curvature-determining method for the diverging acoustic lens of an underwater acoustic transducer is proposed based on the acoustic ray tracing theory.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
College of Mechanical & Electrical Engineering, Central South University, Changsha 410083, China.
In the health monitoring and safety assessments of concrete structures, ultrasonic non-destructive testing (NDT) technology has become an indispensable tool due to its non-destructive nature, efficiency, and precision. However, when used in inspecting irregular concrete surfaces, traditional planar ultrasonic transducers often encounter energy loss and signal attenuation induced by poor interface coupling, which significantly reduces the accuracy and reliability of the test results. To address this problem, this article proposes a point-contact dry coupling ultrasonic transducer solution, which enables efficient acquisition of ultrasonic signals within concrete without the need for couplants.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
State Key Laboratory of Precision Measurements Technology and Instrument, Tianjin University, Tianjin 300072, China.
Piezoelectric micromachined ultrasonic transducers (PMUTs) show considerable promise for application in ultrasound imaging, but the limited bandwidth of the traditional PMUTs largely affects the imaging quality. This paper focuses on how to arrange cells with different frequencies to maximize the bandwidth and proposes a multi-frequency PMUT (MF-PMUT) linear array. Seven cells with gradually changing frequencies are arranged in a monotonic trend to form a unit, and 32 units are distributed across four lines, forming one element.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
DNA damage response (DDR) contributes to seed quality by guarding genome integrity in the delicate phases of pre- and post-germination. As a key determinant of stress tolerance and resilience, DDR has notable implications on the wider scale of the agroecosystems challenged by harsh climatic events. The present review focuses on the existing and documented links that interconnect DDR efficiency with an array of molecular hallmarks with biochemical, molecular, and physiological valence within the seed metabolic networks.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94115, USA.
In exploring adjuvant therapies for head and neck cancer, hyperthermia (40-45 °C) has shown efficacy in enhancing chemotherapy and radiation, as well as the delivery of liposomal drugs. Current hyperthermia treatments, however, struggle to reach large deep tumors uniformly and non-invasively. This study investigates the feasibility of delivering targeted uniform hyperthermia deep into the tissue using a non-invasive ultrasound spherical random phased array transducer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!