Constructing the phase diagram of sodium laurylethoxysulfate using dissipative particle dynamics.

J Colloid Interface Sci

Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom. Electronic address:

Published: December 2019

Hypothesis: Sodium Laurylethoxysulfate (SLES) is a fundamental ingredient in a wide range of surfactant products and the mapping of its various mesophases is pivotal in predicting the liquid viscosity. Here we want to show that the use of properly parameterised coarse-grained molecular models can provide structural information of the surfactant solutions not easily achievable through experimental characterization.

Experiments: We use a novel set of Dissipative Particle Dynamics parameters specifically developed for surfactant molecules to construct the first phase diagram of pure SLES in sodium chloride/water solutions.

Findings: We found that our DPD model is able to reproduce the range of morphologies expected for these types of ionic surfactants and in agreement with recent rheological data and theoretical predictions based on the packing parameter. We calculated the structure factor for various salt concentrations and show that the change from spherical to worm-like micelles can be inferred also looking at the intensity of the peak at intermediate q-values which decreases in intensity as salt concentrations increase. Varying the ethoxyl groups we observe that the additional ethoxyl group increased the micellar radius and affected the micelles' shape polydispersity in the system. Finally, based on the contour length of worm-like micelles observed at intermediate salt concentrations, a closed mathematical formula is proposed capable of predicting the average micellar contour length given the salt and surfactant concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2019.08.091DOI Listing

Publication Analysis

Top Keywords

salt concentrations
12
phase diagram
8
sodium laurylethoxysulfate
8
dissipative particle
8
particle dynamics
8
worm-like micelles
8
contour length
8
constructing phase
4
diagram sodium
4
laurylethoxysulfate dissipative
4

Similar Publications

Background: Salinity stress is a significant challenge in agriculture, particularly in regions where soil salinity is increasing due to factors such as irrigation practices and climate change. This stress adversely affects plant growth, development, and yield, posing a threat to the cultivation of economically important plants like . This study aims to evaluate the effectiveness by proactively applying indole-3-butyric acid (IBA) to cuttings as a practical and efficient method for mitigating the adverse effects of salinity stress.

View Article and Find Full Text PDF

Phosphorus (P) loss from soils can contribute significantly toward P enrichment in water bodies, impairing water quality. Application of soil amendments is a viable strategy to decrease soluble P in surface soils. Since soluble P is reduced through different mechanisms that are amendment-specific, blended amendments could be a better approach than single amendment applications; however, very little information is available on blended amendment effects in reducing P loss from soils.

View Article and Find Full Text PDF

We employ graph neural networks (GNN) to analyse and classify physical gel networks obtained from Brownian dynamics simulations of particles with competing attractive and repulsive interactions. Conventionally such gels are characterized by their position in a state diagram spanned by the packing fraction and the strength of the attraction. Gel networks at different regions of such a state diagram are qualitatively different although structural differences are subtile while dynamical properties are more pronounced.

View Article and Find Full Text PDF

Direct TiH powder production by the reduction of TiO using Mg in Ar and H mixed gas atmosphere.

Sci Rep

January 2025

Research Institute of Energy and Resources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.

To develop a direct production process for TiH powder from TiO, the reduction of TiO using Mg in molten MgCl - KCl salt under a high hydrogen chemical potential was investigated. The reduction of nano-sized TiO powder was conducted at 973 - 1073 K under an Ar or Ar and 10% H mixed gas atmosphere when the mass ratios of Mg to feed and salt to feed were 1.14 - 2.

View Article and Find Full Text PDF

Background: Detection of serum-specific immunoglobulin G (sIgG) to Aspergillus fumigatus traditionally relied on precipitin assays, which lack standardization and have poor analytical sensitivity. Automated quantitative immunoassays are now more widely used alternatives. A challenge, however, is determining reference interval (RI) cutoffs indicative of disease presence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!