Chemical plant protection products (PPPs) is a major group of xenobiotics that are being released in the environment. Although the effects of individual active ingredients (a.i.) on organisms have been studied, information on those of mixtures, is fragmented. Aquatic environments are being polluted by PPPs, posing serious risks for the environment, human, and other organisms. Based on the potential of the model aquatic plant Lemna minor L. in the assessment of PPPs-caused stresses, we have undertaken the task of developing a metabolomics approach for the study of the effects of metribuzin and glyphosate, and their mixtures. Bioassays revealed that metribuzin exhibit higher toxicity than glyphosate and metabolomics highlighted corresponding changes in its metabolome. Treatments had a substantial impact on plants' amino acid pool, resulting in elevated levels of the majority of the identified amino acids. Results indicate that the increased proteolytic activity is a common effect of the a.i. and their mixtures. Additionally, the activation of salicylate-signaling pathways was recorded as a response to the toxicity caused by mixtures. Among the identified metabolites that were discovered as biomarkers were γ-aminobutyric acid (GABA), salicylate, caffeate, α,α-trehalose, and squalene, which play multiple roles in plants' metabolism such as, signaling, antioxidant, and structure protection. No reports exist on the combined effects of PPPs on Lemna and results confirm the applicability of Lemna metabolomics in the study of the combined effects of herbicides and its potential in the monitoring of the environmental health of aquatic environments based on fluctuations of the plant's metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.124582 | DOI Listing |
Polymers (Basel)
December 2024
Department of Fiber System Engineering, Yeungnam University, Gyeongbuk 38541, Republic of Korea.
The development of innovative, cost effective, and biocompatible sensor materials for rapid and efficient practical applications is a key area of focus in electroanalytical chemistry. In this research, we report on a novel biocompatible sensor, made using a unique polybenzoxazine-based carbon combined with amino cellulose and hyaluronic acid to produce a bio-polymer complex (PBC-ACH) (polybenzoxazine-based carbon with amino cellulose and hyaluronic acid). This sensor material is fabricated for the first time to enable the electroreduction of the herbicide, metribuzin (MTZ).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
Our study investigated the effects of terbuthylazine (TBA) and metribuzin (MT) on rice and radish at field application concentrations. Both herbicides induced oxidative stress and severely inhibited growth in the two crops. However, the radish cultivar T-33 exhibited significantly lower stress levels compared to the sensitive cultivar S-24, suggesting its higher tolerance to TBA and MT.
View Article and Find Full Text PDFSci Rep
December 2024
Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA.
Tissue Cell
December 2024
Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.
Metribuzin (MBN) is a selective herbicide that adversely damages the vital organs of the body including the liver. Pratensein (PTN) is a novel flavonoid that exhibits marvelous medicinal properties. This experimental trial commenced to elucidate the pharmacotherapeutic strength of PTN to counteract MBN provoked liver toxicity in rats.
View Article and Find Full Text PDFEnviron Int
November 2024
Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
Objective: Elevated pesticide concentrations have been found in dust from homes with residents who use agricultural pesticides, but few studies have compared these concentrations to quantitative measures of their use. We evaluated household pesticide dust concentrations in relation to quantitative, active ingredient-specific metrics of agricultural pesticide use in the Biomarkers of Exposure and Effect in Agriculture Study.
Methods: Participants provided vacuum dust samples (2013-2018) and information regarding recent (last 12 months) and lifetime pesticide use.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!