A previously developed and centrally validated MammaPrint® (MP) and BluePrint® (BP) targeted RNA next-generation sequencing (NGS) kit was implemented and validated in two large academic European hospitals. Additionally, breast cancer molecular subtypes by MP and BP RNA sequencing were compared with immunohistochemistry (IHC). Patients with early breast cancer diagnosed at University Hospitals Leuven and Curie Institute Paris were prospectively included between September 2017 and January 2018. Formalin-fixed paraffin-embedded tissue sections were analyzed with MP and BP NGS technology at the beta sites and with both NGS and microarray technology at Agendia. Raw NGS data generated on Illumina MiSeq instruments at the beta sites were interpreted and compared with NGS and microarray data at Agendia. MP and BP NGS molecular subtypes were compared to surrogate IHC breast cancer subtypes. Equivalence of MP and BP indices was determined by Pearson's correlation coefficient. Acceptable limits were defined a priori, based on microarray data generated at Agendia between 2012 and 2016. The concordance, the Negative Percent Agreement and the Positive Percent Agreement were calculated based on the contingency tables and had to be equal to or higher than 90%. Out of 124 included samples, 48% were MP Low and 52% High Risk with microarray. Molecular subtypes were BP luminal, HER2 or basal in 82%, 8% and 10% respectively. Concordance between MP microarray at Agendia and MP NGS at the beta sites was 91.1%. Concordance of MP High and Low Risk classification between NGS at the beta sites and NGS at Agendia was 93.9%. Concordance of MP and BP molecular subtyping using NGS at the beta sites and microarray at Agendia was 89.5%. Concordance between MP and BP NGS subtyping, and IHC was 71.8% and 76.6%, for two IHC surrogate models. The MP/BP NGS kit was successfully validated in a decentralized setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742807PMC
http://dx.doi.org/10.1016/j.tranon.2019.08.008DOI Listing

Publication Analysis

Top Keywords

beta sites
20
ngs
12
breast cancer
12
molecular subtypes
12
ngs beta
12
mammaprint® blueprint®
8
university hospitals
8
hospitals leuven
8
leuven curie
8
curie institute
8

Similar Publications

Background: Carotid intima-media thickness (IMT) is a measure of atherosclerosis and a predictor of vascular diseases. Traditional vascular risk factors and genetic variants do not completely explain the variation in carotid IMT. We sought to identify epigenetic factors that may contribute to the remaining carotid IMT variability.

View Article and Find Full Text PDF

Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga , we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural.

View Article and Find Full Text PDF

Background: Testicular seminoma is the most common malignant tumor of the testis. It occurs at a rate of 5 per 100 000 men, primarily between the ages of 15 to 34. While seminomas typically occur in the testis, other primary sites include the mediastinum, the retroperitoneum, or other extra-gonadal sites.

View Article and Find Full Text PDF

Background And Aims: The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients.

View Article and Find Full Text PDF

TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!