Hematopoietic stem cells (HSCs) are an essential source and reservoir for normal hematopoiesis, and their function is compromised in many blood disorders. HSC research has benefitted from the recent development of single-cell molecular profiling technologies, where single-cell RNA sequencing (scRNA-seq) in particular has rapidly become an established method to profile HSCs and related hematopoietic populations. The classic definition of HSCs relies on transplantation assays, which have been used to validate HSC function for cell populations defined by flow cytometry. Flow cytometry information for single cells, however, is not available for many new high-throughput scRNA-seq methods, thus highlighting an urgent need for the establishment of alternative ways to pinpoint the likely HSCs within large scRNA-seq data sets. To address this, we tested a range of machine learning approaches and developed a tool, hscScore, to score single-cell transcriptomes from murine bone marrow based on their similarity to gene expression profiles of validated HSCs. We evaluated hscScore across scRNA-seq data from different laboratories, which allowed us to establish a robust method that functions across different technologies. To facilitate broad adoption of hscScore by the wider hematopoiesis community, we have made the trained model and example code freely available online. In summary, our method hscScore provides fast identification of mouse bone marrow HSCs from scRNA-seq measurements and represents a broadly useful tool for analysis of single-cell gene expression data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900257 | PMC |
http://dx.doi.org/10.1016/j.exphem.2019.08.009 | DOI Listing |
BMC Pulm Med
January 2025
Universal Scientific Education and Research Network (USERN), Tehran, Iran.
Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.
Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.
View Article and Find Full Text PDFBMC Public Health
January 2025
Statistics, Brigham Young University, Provo, 84602, Utah, USA.
Background: Bullying, encompassing physical, psychological, social, or educational harm, affects approximately 1 in 20 United States teens aged 12-18. The prevalence and impact of bullying, including online bullying, necessitate a deeper understanding of risk and protective factors to enhance prevention efforts. This study investigated the key risk and protective factors most highly associated with adolescent bullying victimization.
View Article and Find Full Text PDFSci Rep
January 2025
Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.
View Article and Find Full Text PDFSci Rep
January 2025
College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, 321004, China.
Athlete engagement is influenced by several factors, including cohesion, passion and mental toughness. Machine learning methods are frequently employed to construct predictive models as a result of their high efficiency. In order to comprehend the effects of cohesion, passion and mental toughness on athlete engagement, this study utilizes the relevant methods of machine learning to construct a prediction model, so as to find the intrinsic connection between them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!