Since the 1980s, deep and extensive skin wounds and burns are treated with autologous split-thickness skin grafts, or cultured epidermal autografts, when donor sites are limited. However, the clinical use of cultured epidermal autografts often remains unsatisfactory because of poor engraftment rates, altered wound healing, and reduced skin functionality. In the past few decades, mesenchymal stromal cells (MSCs) have raised much attention because of their anti-inflammatory, protrophic, and pro-remodeling capacities. More specifically, gingival MSCs have been shown to possess enhanced wound healing properties compared with other tissue sources. Growing evidence also indicates that MSC priming could potentiate therapeutic effects in diverse in vitro and in vivo models of skin trauma. In this study, we found that IL-1β-primed gingival MSCs promoted cell migration, dermal-epidermal junction formation, and inflammation reduction in vitro, as well as improved epidermal substitute engraftment in vivo. IL-1β-primed gingival MSCs had different secretory profiles from naive gingival MSCs, characterized by an overexpression of transforming growth factor-β and matrix metalloproteinase (MMP) pathway agonists. Eventually, MMP-1, MMP-9, and transforming growth factor-β1 appeared to be critically involved in IL-1β-primed gingival MSC mechanisms of action.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jid.2019.07.721 | DOI Listing |
Cytotherapy
November 2024
Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil. Electronic address:
Cellular senescence is intricately linked with numerous changes observed in the aging process, including the depletion of the stem cell pool and the decline in tissue and organ functions. Over the past three decades, efforts to halt and reverse aging have intensified, bringing rejuvenation closer to reality. Current strategies involve treatments using stem cells or their derivatives, such as the secretome.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.
Purpose: Exosomes from mesenchymal stromal cells (MSCs) can prevent the development of medication-related osteonecrosis of the jaw (MRONJ) by promoting tooth socket wound healing; however, the exact mechanism remains to be clarified. In this study, our aim was to explore the mechanisms of exosomes derived from adipose-derived mesenchymal stromal cells (ADSCs) in preventing MRONJ by focusing on macrophage M1 polarization and pyroptosis.
Methods: The MRONJ model was established by the administration of zoledronate and tooth extraction.
Acta Biomater
January 2025
Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan. Electronic address:
Stem Cell Res Ther
November 2024
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
Background: Increasing evidence suggests that mesenchymal stem cells (MSCs) repair traumatized tissues primarily through paracrine secretion and differentiation into specific cell types. However, the role of epithelial differentiation of MSCs in cutaneous wound healing is unclear. This study aimed to investigate the epithelial differentiation potential of gingival tissue-derived MSCs (GMSCs) in epithelial cell growth medium and the mechanisms underlying their differentiation into an epithelial-like cell phenotype.
View Article and Find Full Text PDFTissue Eng Regen Med
November 2024
Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India.
Background: Gingival mesenchymal stem cells (GMSCs) are distinctive homogenous subset of mesenchymal stem cells (MSCs), which has its development from neural ectomesenchyme along with contributions from the perifollicular mesenchyme and the dental follicle proper. GMSCs stand apart from other dental MSCs owing to their ease of accessibility and availability with incredible long culture sustainability without any tumorigenic capability, and stable telomerase activity. Their capacity to differentiate into various cell lineages and inherent therapeutic effect in chronic inflammatory diseases like colitis, rheumatoid arthritis, systemic lupus erythematous (SLE) and diabetes makes them immensely valuable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!