Background: The halophyte Suaeda aralocaspica performs complete C4 photosynthesis within individual cells (SCC4), which is distinct from typical C4 plants, which require the collaboration of 2 types of photosynthetic cells. However, despite SCC4 plants having features that are valuable in engineering higher photosynthetic efficiencies in agriculturally important C3 species such as rice, there are no reported sequenced SCC4 plant genomes, limiting our understanding of the mechanisms involved in, and evolution of, SCC4 photosynthesis.
Findings: Using Illumina and Pacific Biosciences sequencing platforms, we generated ∼202 Gb of clean genomic DNA sequences having a 433-fold coverage based on the 467 Mb estimated genome size of S. aralocaspica. The final genome assembly was 452 Mb, consisting of 4,033 scaffolds, with a scaffold N50 length of 1.83 Mb. We annotated 29,604 protein-coding genes using Evidence Modeler based on the gene information from ab initio predictions, homology levels with known genes, and RNA sequencing-based transcriptome evidence. We also annotated noncoding genes, including 1,651 long noncoding RNAs, 21 microRNAs, 382 transfer RNAs, 88 small nuclear RNAs, and 325 ribosomal RNAs. A complete (circular with no gaps) chloroplast genome of S. aralocaspica 146,654 bp in length was also assembled.
Conclusions: We have presented the genome sequence of the SCC4 plant S. aralocaspica. Knowledge of the genome of S. aralocaspica should increase our understanding of the evolution of SCC4 photosynthesis and contribute to the engineering of C4 photosynthesis into economically important C3 crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6741815 | PMC |
http://dx.doi.org/10.1093/gigascience/giz116 | DOI Listing |
Microbiol Resour Announc
January 2025
Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, USA.
Arctic ground squirrels () hibernate for several months without eating or drinking yet suffer no disuse atrophy. We are investigating the potential contributions of gut microorganisms to host nitrogen homeostasis, and here, we describe the genome assemblies of 35 isolated bacteria collected from gastrointestinal material and sequenced using Nanopore technology.
View Article and Find Full Text PDFPlant J
January 2025
Unit of Aromatic and Medicinal Plants, Newe Ya'ar Research Center, Volcani Institute, Ramat-Yishay, Israel.
Basil, Ocimum basilicum L., is a widely cultivated aromatic herb, prized for its culinary and medicinal uses, predominantly owing to its unique aroma, primarily determined by eugenol for Genovese cultivars or methyl chavicol for Thai cultivars. To date, a comprehensive basil reference genome has been lacking, with only a fragmented draft available.
View Article and Find Full Text PDFMathematical modeling of somatic evolution, a process impacting both host cells and microbial communities in the human body, can capture important dynamics driving carcinogenesis. Here we considered models for esophageal adenocarcinoma (EAC), a cancer that has dramatically increased in incidence over the past few decades in Western populations, with high case fatality rates due to late-stage diagnoses. Despite advancements in genomic analyses of the precursor Barrett's esophagus (BE), prevention of late-stage EAC remains a significant clinical challenge.
View Article and Find Full Text PDFinfects the urogenital tract of men and women and causes the sexually transmitted infection trichomoniasis. Since the publication of its draft genome in 2007, the genome has drawn attention for several reasons, including its unusually large size, massive expansion of gene families, and high repeat content. The fragmented nature of the draft assembly made it challenging to obtain accurate metrics of features, such as spliceosomal introns.
View Article and Find Full Text PDFUnlabelled: Antibiotic resistance is frequently observed shortly after the clinical introduction of an antibiotic. Whether and how frequently that resistance occurred before the introduction is harder to determine, as isolates could not have been tested for resistance before an antibiotic was discovered. Historical collections, like the British National Collection of Type Cultures (NCTC), stretching back to 1885, provide a window into this history.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!