A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An artificial intelligent diagnostic system on mobile Android terminals for cholelithiasis by lightweight convolutional neural network. | LitMetric

Artificial intelligence (AI) tools have been applied to diagnose or predict disease risk from medical images with recent data disclosure actions, but few of them are designed for mobile terminals due to the limited computational power and storage capacity of mobile devices. In this work, a novel AI diagnostic system is proposed for cholelithiasis recognition on mobile devices with Android platform. To this aim, a data set of CT images of cholelithiasis is firstly collected from The Third Hospital of Shandong Province, China, and then we technically use histogram equalization to preprocess these CT images. As results, a lightweight convolutional neural network is obtained in a constructive way to extract cholelith features and recognize gallstones. In terms of implementation, we compile Java and C++ to adapt to the application of deep learning algorithm on mobile devices with Android platform. Noted that, the training task is completed offline on PC, but cholelithiasis recognition tasks are performed on mobile terminals. We evaluate and compare the performance of our MobileNetV2 with MobileNetV1, Single Shot Detector (SSD), YOLOv2 and original SSD (with VGG-16) as feature extractors for object detection. It is achieved that our MobileNetV2 achieve similar accuracy rate, about 91% with the other four methods, but the number of parameters used is reduced from 36.1M (SSD 300, SSD512), 50.7M (Yolov2) and 5.1M (MobileNetV1) to 4.3M (MobileNetV2). The complete process on testing mobile devices, including Virtual machine, Xiaomi 7 and Htc One M8 can be controlled within 4 seconds in recognizing cholelithiasis as well as the degree of the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742400PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221720PLOS

Publication Analysis

Top Keywords

mobile devices
16
diagnostic system
8
lightweight convolutional
8
convolutional neural
8
neural network
8
mobile terminals
8
cholelithiasis recognition
8
devices android
8
android platform
8
mobile
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!