Recreational consumption of synthetic cannabinoid receptor agonists (SCRAs) is a growing crisis in public health in many parts of the world. AMB-FUBINACA is a member of this class of drugs and is responsible for a large proportion of SCRA-related toxicity both in New Zealand and internationally. Strikingly, little is currently known about the mechanisms by which SCRAs exert toxic effects or whether their activity through the CB cannabinoid receptor (the mediator of cannabinoid-related psychoactivity) is sufficient to explain clinical observations. The current study therefore set out to perform a basic molecular pharmacology characterization of AMB-FUBINACA (in comparison to traditional research cannabinoids CP55,940, WIN55,212-2, and Δ-THC) in fundamental pathways of receptor activity, including cAMP inhibition, pERK activation, ability to drive CB internalization, and ability to induce translocation of β-arrestins-1 and -2. Activity pathways were then compared by operational analysis to indicate whether AMB-FUBINACA may be a biased ligand. Results revealed that AMB-FUBINACA is highly efficacious and potent in all pathways assayed. However, surprisingly, bias analysis suggested that Δ-THC, not AMB-FUBINACA, may be a biased ligand, with it being less active in both arrestin pathways than predicted by the activity of the other ligands tested. These data may help predict molecular characteristics of SCRAs. However, more research is required to determine whether these molecular effects manifest in toxicity at tissue/system level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365684PMC
http://dx.doi.org/10.1021/acschemneuro.9b00429DOI Listing

Publication Analysis

Top Keywords

cannabinoid receptor
12
synthetic cannabinoid
8
receptor agonists
8
amb-fubinaca biased
8
biased ligand
8
amb-fubinaca
6
activity
5
toxic synthetic
4
receptor
4
agonists signature
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!